21 results on '"Daniel Han-Kwan"'
Search Results
2. On the linearized Vlasov-Poisson system on the whole space around stable homogeneous equilibria
- Author
-
Toan T. Nguyen, Daniel Han-Kwan, Frédéric Rousset, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019), ANR-18-CE40-0027,SingFlows,Ecoulements avec singularités : couches limites, filaments de vortex, interaction vague-structure(2018), and ANR-18-CE40-0020,ODA,Ondes déterministes et aléatoires(2018)
- Subjects
Physics ,010102 general mathematics ,Complex system ,Statistical and Nonlinear Physics ,Space (mathematics) ,01 natural sciences ,010101 applied mathematics ,Mathematics - Analysis of PDEs ,Homogeneous ,Physical space ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Poisson system ,Mathematical Physics ,Analysis of PDEs (math.AP) ,Mathematical physics - Abstract
We study the linearized Vlasov–Poisson system around suitably stable homogeneous equilibria on $${\mathbb {R}}^d\times {\mathbb {R}}^d$$ (for any $$d \ge 1$$ ) and establish dispersive $$L^\infty $$ decay estimates in the physical space.
- Published
- 2021
- Full Text
- View/download PDF
3. Concentration versus absorption for the Vlasov-Navier-Stokes system on bounded domains
- Author
-
Lucas Ertzbischoff, Ayman Moussa, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,01 natural sciences ,Domain (mathematical analysis) ,Exponential function ,010101 applied mathematics ,symbols.namesake ,Mathematics - Analysis of PDEs ,Distribution function ,Flow velocity ,Bounded function ,Dirichlet boundary condition ,FOS: Mathematics ,symbols ,Boundary value problem ,0101 mathematics ,[MATH]Mathematics [math] ,Absorption (electromagnetic radiation) ,Mathematical Physics ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
We study the large time behaviour of small data solutions to the Vlasov–Navier–Stokes system set on Ω × R 3 , for a smooth bounded domain Ω of R 3 , with homogeneous Dirichlet boundary condition for the fluid and absorption boundary condition for the kinetic phase. We prove that the fluid velocity homogenizes to 0 while the distribution function concentrates towards a Dirac mass in velocity centred at 0, with an exponential rate. The proof, which follows the methods introduced in Han-Kwan et al (2020 Arch. Ration. Mech. Anal. 236 1273–323), requires a careful analysis of the boundary effects. We also exhibit examples of classes of initial data leading to a variety of asymptotic behaviours for the kinetic density, from total absorption to no absorption at all.
- Published
- 2021
- Full Text
- View/download PDF
4. From Newton's second law to Euler's equations of perfect fluids
- Author
-
Mikaela Iacobelli, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019)
- Subjects
General Mathematics ,FOS: Physical sciences ,01 natural sciences ,symbols.namesake ,Mathematics - Analysis of PDEs ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,FOS: Mathematics ,Fluid dynamics ,Coulomb ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Incompressible euler equations ,Limit (mathematics) ,0101 mathematics ,Mathematical Physics ,Physics ,Heuristic ,Applied Mathematics ,010102 general mathematics ,Dynamics (mechanics) ,Mathematical Physics (math-ph) ,010101 applied mathematics ,Classical mechanics ,Energy method ,Euler's formula ,symbols ,Analysis of PDEs (math.AP) - Abstract
Vlasov equations can be formally derived from N-body dynamics in the mean-field limit. In some suitable singular limits, they may themselves converge to fluid dynamics equations. Motivated by this heuristic, we introduce natural scalings under which the incompressible Euler equations can be rigorously derived from N-body dynamics with repulsive Coulomb interaction. Our analysis is based on the modulated energy methods of Brenier and Serfaty., Minor typos corrected
- Published
- 2021
- Full Text
- View/download PDF
5. Large time behavior of the Vlasov-Navier-Stokes system on the torus
- Author
-
Iván Moyano, Ayman Moussa, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Statistical Laboratory [Cambridge], Department of Pure Mathematics and Mathematical Statistics (DPMMS), Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)-Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM), and ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019)
- Subjects
Physics ,Mechanical Engineering ,Dirac (video compression format) ,010102 general mathematics ,Mathematical analysis ,Complex system ,Structure (category theory) ,Mathematics::Analysis of PDEs ,Torus ,Type (model theory) ,01 natural sciences ,Exponential function ,010101 applied mathematics ,Mathematics (miscellaneous) ,Distribution function ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Analysis ,Energy (signal processing) ,Analysis of PDEs (math.AP) - Abstract
International audience; We study the large time behavior of Fujita–Kato type solutions to the Vlasov–Navier–Stokes system set on $\T^3 \times \R^3$. Under the assumption that the initial so-called modulated energy is small enough, we prove that the distribution function converges to a Dirac mass in velocity, with exponential rate. The proof is based on the fine structure of the system and on a bootstrap analysis allowing us to get global bounds on moments.
- Published
- 2019
- Full Text
- View/download PDF
6. Long time estimates for the Vlasov-Maxwell system in the non-relativistic limit
- Author
-
Daniel Han-Kwan, Toan T. Nguyen, Frédéric Rousset, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Pennsylvania State University (Penn State), Penn State System, Laboratoire de Mathématiques d'Orsay (LMO), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Polynomial ,010102 general mathematics ,Mathematical analysis ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Complex system ,FOS: Physical sciences ,Inverse ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,01 natural sciences ,Speed of light (cellular automaton) ,Stability (probability) ,010101 applied mathematics ,Sobolev space ,Arbitrarily large ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Mathematical Physics ,Analysis of PDEs (math.AP) - Abstract
International audience; In this paper, we study the Vlasov-Maxwell system in the non-relativistic limit, that is in the regime where the speed of light is a very large parameter. We consider data lying in the vicinity of homogeneous equilibria that are stable in the sense of Penrose (for the Vlasov-Poisson system), and prove Sobolev stability estimates that are valid for times which are polynomial in terms of the speed of light and of the inverse of size of initial perturbations. We build a kind of higher-order Vlasov-Darwin approximation which allows us to reach arbitrarily large powers of the speed of light.
- Published
- 2018
- Full Text
- View/download PDF
7. Control of water waves
- Author
-
Pietro Baldi, Daniel Han-Kwan, Thomas Alazard, Baldi, Pietro, Alazard, Thoma, Han Kwan, Daniel, Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques Laurent Schwartz (CMLS), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Work (thermodynamics) ,General Mathematics ,Controllability, water waves, capillarity (surface tension), Ingham inequality, paradifferential calculus ,01 natural sciences ,symbols.namesake ,Mathematics - Analysis of PDEs ,Control theory ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics - Optimization and Control ,Joint (geology) ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mechanics ,Euler equations ,010101 applied mathematics ,Controllability ,Optimization and Control (math.OC) ,Free surface ,symbols ,Compressibility ,Solid body ,Analysis of PDEs (math.AP) - Abstract
We prove local exact controllability in arbitrary short time of the two-dimensional incompressible Euler equation with free surface, in the case with surface tension. This proves that one can generate arbitrary small amplitude periodic gravity-capillary water waves by blowing on a localized portion of the free surface of a liquid., Comment: 71 pages
- Published
- 2018
- Full Text
- View/download PDF
8. On propagation of higher space regularity for non-linear Vlasov equations
- Author
-
Daniel Han-Kwan
- Subjects
Numerical Analysis ,Class (set theory) ,Work (thermodynamics) ,Applied Mathematics ,Mathematical analysis ,Context (language use) ,Space (mathematics) ,Sobolev space ,Nonlinear system ,Mathematics - Analysis of PDEs ,Physics::Plasma Physics ,Norm (mathematics) ,FOS: Mathematics ,35Q83 ,kinetic averaging lemmas ,kinetic transport equations ,Limit (mathematics) ,Analysis ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
This work is concerned with the broad question of propagation of regularity for smooth solutions to nonlinear Vlasov equations. For a class of equations (that includes Vlasov–Poisson and relativistic Vlasov–Maxwell systems), we prove that higher regularity in space is propagated, locally in time, into higher regularity for the moments in velocity of the solution. This in turn can be translated into some anisotropic Sobolev higher regularity for the solution itself, which can be interpreted as a kind of weak propagation of space regularity. To this end, we adapt the methods introduced by D. Han-Kwan and F. Rousset (Ann. Sci. Ecole Norm. Sup. 49:6 (2016) 1445–1495) in the context of the quasineutral limit of the Vlasov–Poisson system.
- Published
- 2017
9. The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric
- Author
-
Mikaela Iacobelli, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Pure Mathematics and Mathematical Statistics (DPMMS), Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), and University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
- Subjects
Work (thermodynamics) ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,01 natural sciences ,Measure (mathematics) ,Stability (probability) ,010101 applied mathematics ,Massless particle ,Wasserstein metric ,Convergence (routing) ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Poisson's equation ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
In this work, we study the quasineutral limit of the one-dimensional Vlasov-Poisson equation for ions with massless thermalized electrons. We prove new weak-strong stability estimates in the Wasserstein metric that allow us to extend and improve previously known convergence results. In particular, we show that given a possibly unstable analytic initial profile, the formal limit holds for sequences of measure initial data converging sufficiently fast in the Wasserstein metric to this profile. This is achieved without assuming uniform analytic regularity.
- Published
- 2017
- Full Text
- View/download PDF
10. The Vlasov-Navier-Stokes system in a 2D pipe: existence and stability of regular equilibria
- Author
-
Ayman Moussa, Olivier Glass, Daniel Han-Kwan, Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de Mathématiques Laurent Schwartz (CMLS), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Mechanical Engineering ,010102 general mathematics ,Mathematical analysis ,Complex system ,Thermodynamics ,Hagen–Poiseuille equation ,Kinetic energy ,01 natural sciences ,Stability (probability) ,010101 applied mathematics ,Physics::Fluid Dynamics ,Mathematics (miscellaneous) ,Mathematics - Analysis of PDEs ,Exponential stability ,Phase (matter) ,FOS: Mathematics ,Boundary value problem ,0101 mathematics ,[MATH]Mathematics [math] ,Analysis ,Stationary state ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
International audience; In this paper, we study the Vlasov-Navier-Stokes system in a 2D pipe with partially absorbing boundary conditions. We show the existence of stationary states for this system near small Poiseuille flows for the fluid phase, for which the kinetic phase is not trivial. We prove the asymptotic stability of these states with respect to appropriately compactly supported perturbations. The analysis relies on geometric control conditions which help to avoid any concentration phenomenon for the kinetic phase.
- Published
- 2016
- Full Text
- View/download PDF
11. Nonlinear instability of Vlasov-Maxwell systems in the classical and quasineutral limits
- Author
-
Daniel Han-Kwan and Toan T. Nguyen
- Subjects
Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse ,Order (ring theory) ,01 natural sciences ,Instability ,Classical limit ,010101 applied mathematics ,Sobolev space ,Computational Mathematics ,symbols.namesake ,Mathematics - Analysis of PDEs ,Physics::Plasma Physics ,FOS: Mathematics ,symbols ,Speed of light ,Limit (mathematics) ,0101 mathematics ,Analysis ,Debye length ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
We study the instability of solutions to the relativistic Vlasov--Maxwell systems in two limiting regimes: the classical limit when the speed of light tends to infinity and the quasineutral limit when the Debye length tends to zero. First, in the classical limit, $\varepsilon \to 0$, with $\varepsilon$ being the inverse of the speed of light, we construct a family of solutions that converge initially polynomially fast to a homogeneous solution $\mu$ of Vlasov--Poisson systems in arbitrarily high Sobolev norms, but become of order one away from $\mu$ in arbitrary negative Sobolev norms within time of order $|\log \varepsilon|$. Second, we deduce the invalidity of the quasineutral limit in $L^2$ in arbitrarily short time.
- Published
- 2015
12. Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II
- Author
-
Daniel Han-Kwan, David Gérard-Varet, Frédéric Rousset, Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LM-Orsay), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Work (thermodynamics) ,General Mathematics ,Astrophysics::High Energy Astrophysical Phenomena ,010102 general mathematics ,Mathematical analysis ,Boundary (topology) ,01 natural sciences ,Isothermal process ,010101 applied mathematics ,symbols.namesake ,Mathematics - Analysis of PDEs ,Euler's formula ,symbols ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Astrophysics::Solar and Stellar Astrophysics ,Supersonic speed ,Outflow ,Limit (mathematics) ,0101 mathematics ,Outflow boundary ,Astrophysics::Galaxy Astrophysics ,Analysis of PDEs (math.AP) - Abstract
International audience; In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work \cite{GVHKR}, devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.
- Published
- 2014
- Full Text
- View/download PDF
13. Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium
- Author
-
Matthieu Léautaud, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Jussieu (IMJ), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Partial differential equation ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,General Physics and Astronomy ,Boundary (topology) ,01 natural sciences ,Boltzmann equation ,010101 applied mathematics ,symbols.namesake ,Mathematics - Analysis of PDEs ,Collision frequency ,Bounded function ,Phase space ,Boltzmann constant ,symbols ,FOS: Mathematics ,Equivalence relation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Geometry and Topology ,0101 mathematics ,Mathematical Physics ,Analysis ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
This work is devoted to the analysis of the linear Boltzmann equation on the torus, in the presence of a force deriving from a potential. The collision operator is allowed to be degenerate in the following two senses: (1) the associated collision kernel may vanish in a large subset of the phase space; (2) we do not assume that it is bounded below by a Maxwellian at infinity in velocity. We study how the association of transport and collision phenomena can lead to convergence to equilibrium, using concepts and ideas from control theory. We prove two main classes of results. On the one hand, we show that convergence towards an equilibrium is equivalent to an almost everywhere geometric control condition. The equilibria (which are not necessarily Maxwellians with our general assumptions on the collision kernel) are described in terms of the equivalence classes of an appropriate equivalence relation involving transport and collisions. On the other hand, we characterize the exponential convergence to equilibrium in terms of the Lebeau constant, which involves some averages of the collision frequency along the flow of the transport. We also explain how to handle the case of linear Boltzmann equations posed on the phase space associated to a compact Riemannian manifold without boundary.
- Published
- 2014
- Full Text
- View/download PDF
14. Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation
- Author
-
Maxime Hauray, Daniel Han-Kwan, Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematical analysis ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Vlasov equation ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Monotonic function ,Mathematical Physics (math-ph) ,16. Peace & justice ,Instability ,Symmetry (physics) ,Mathematics - Analysis of PDEs ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,35Q83, 35B35 ,Limit (mathematics) ,Poisson's equation ,Degeneracy (mathematics) ,Stationary state ,Mathematical Physics ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
This work is concerned with the quasineutral limit of the one-dimensional Vlasov-Poisson equation, for initial data close to stationary homogeneous profiles. Our objective is threefold: first, we provide a proof of the fact that the formal limit does not hold for homogeneous profiles that satisfy the Penrose instability criterion. Second, we prove on the other hand that the limit is true for homogeneous profiles that satisfy some monotonicity condition, together with a symmetry condition. We handle the case of well-prepared as well as ill- prepared data. Last, we study a stationary boundary-value problem for the formal limit, the so-called quasineutral Vlasov equation. We show the existence of numerous stationary states, with a lot of freedom in the construction (compared to that of BGK waves for Vlasov-Poisson): this illustrates the degeneracy of the limit equation., 50 pages
- Published
- 2013
- Full Text
- View/download PDF
15. Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries
- Author
-
David Gérard-Varet, Frédéric Rousset, Daniel Han-Kwan, Institut de Mathématiques de Jussieu ( IMJ ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Département de Mathématiques et Applications - ENS Paris ( DMA ), École normale supérieure - Paris ( ENS Paris ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and École normale supérieure - Paris (ENS Paris)
- Subjects
General Mathematics ,Boundary (topology) ,Electron ,boundary layers ,01 natural sciences ,linearized modulated energy ,Domain (mathematical analysis) ,symbols.namesake ,Mathematics - Analysis of PDEs ,quasineutral limit ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,Physics::Plasma Physics ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Mathematics ,Partial differential equation ,010102 general mathematics ,Mathematical analysis ,Isothermal Euler-Poisson system ,Plasma ,010101 applied mathematics ,Massless particle ,Euler's formula ,symbols ,76N15, 76N25, 35Q35 ,Analysis of PDEs (math.AP) - Abstract
We study the quasineutral limit of the isothermal Euler-Poisson system describing a plasma made of ions and massless electrons. The analysis is achieved in a domain of $\R^3$ and thus extends former results by Cordier and Grenier [Comm. Partial Differential Equations, 25 (2000), pp.~1099--1113], who dealt with the same problem in a one-dimensional domain without boundary., Comment: 32 pages
- Published
- 2013
16. L^1 averaging lemma for transport equations with Lipschitz force fields
- Author
-
Daniel Han-Kwan, Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Numerical Analysis ,010102 general mathematics ,Mathematical analysis ,16. Peace & justice ,Lipschitz continuity ,Kinetic energy ,01 natural sciences ,Force field (chemistry) ,010101 applied mathematics ,Mathematics - Analysis of PDEs ,Modeling and Simulation ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Nabla symbol ,0101 mathematics ,Convection–diffusion equation ,Mathematical physics ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
The purpose of this note is to extend the $L^1$ averaging lemma of Golse and Saint-Raymond \cite{GolSR} to the case of a kinetic transport equation with a force field $F(x)\in W^{1,\infty}$. To this end, we will prove a local in time mixing property for the transport equation $\partial_t f + v.\nabla_x f + F.\nabla_v f =0$., Comment: 15 pages, to be published in Kinetic and Related Models
- Published
- 2010
17. On the confinement of a tokamak plasma
- Author
-
Daniel Han-Kwan, Département de Mathématiques et Applications - ENS Paris (DMA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Tokamak ,FOS: Physical sciences ,01 natural sciences ,Instability ,law.invention ,magnetic confinement fusion ,Mathematics - Analysis of PDEs ,law ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Statistical physics ,0101 mathematics ,Physics ,Hydrodynamic stability ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Magnetic confinement fusion ,Mechanics ,Plasma ,Physics - Plasma Physics ,Magnetic field ,hydrodynamic stability and instability ,010101 applied mathematics ,Plasma Physics (physics.plasm-ph) ,Computational Mathematics ,Plasma stability ,Analysis ,Numerical stability ,Analysis of PDEs (math.AP) - Abstract
The goal of this paper is to understand from a mathematical point of view the magnetic confinement of plasmas for fusion. Following Fr\'enod and Sonnendr\"ucker \cite{FS2}, we first use two-scale convergence tools to derive a gyrokinetic system for a plasma submitted to a large magnetic field with a slowly spatially varying intensity. We formally derive from this system a simplified bi-temperature fluid system. We then investigate the behaviour of the plasma in such a regime and we prove nonlinear stability or instability depending on which side of the tokamak we are looking at. In our analysis, we will also point out that there exists a temperature gradient threshold beyond which one can expect stability, even in the "bad" side : this corresponds to the so-called H-mode., Comment: 31 pages, accepted for publication in SIAM J. Math. Anal.
- Published
- 2009
18. The three-dimensional Finite Larmor Radius Approximation
- Author
-
Daniel Han-Kwan, Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Thermodynamic equilibrium ,Gyroradius ,General Mathematics ,Electron ,01 natural sciences ,Mathematics - Analysis of PDEs ,Physics::Plasma Physics ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Mathematics ,Lemma (mathematics) ,iter ,010102 general mathematics ,Mathematical analysis ,Larmor formula ,finite larmor radius approximation ,Plasma ,Magnetic field ,010101 applied mathematics ,gyrokinetic approximation ,Classical mechanics ,Physics::Space Physics ,averaging lemma ,Analysis of PDEs (math.AP) - Abstract
Following Frenod and Sonnendrucker (SIAM J. Math. Anal. 32(6) (2001) 1227-1247), we consider the finite Larmor radius regime for a plasma submitted to a large magnetic field and take into account both the quasineutrality and the local thermodynamic equilibrium of the electrons. We then rigorously establish the asymptotic gyrokinetic limit of the rescaled and modified Vlasov-Poisson system in a three-dimensional setting with the help of an averaging lemma.
- Published
- 2008
19. On the controllability of the Vlasov–Poisson system in the presence of external force fields
- Author
-
Daniel Han-Kwan and Olivier Glass
- Subjects
0209 industrial biotechnology ,Force field (physics) ,Applied Mathematics ,010102 general mathematics ,Work (physics) ,02 engineering and technology ,01 natural sciences ,Magnetic field ,Controllability ,020901 industrial engineering & automation ,Classical mechanics ,Bounded function ,Electric field ,0101 mathematics ,Poisson system ,Analysis ,Mathematics - Abstract
In this work, we are interested in the controllability of Vlasov–Poisson systems in the presence of an external force field (namely a bounded force field or a magnetic field), by means of a local interior control. We are able to extend the results of Glass (2003) [8], where the only present force was the self-consistent electric field.
- Full Text
- View/download PDF
20. On the Vlasov-Maxwell System : régularity and non-relativistic limit
- Author
-
Brigouleix, Nicolas, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Paris, François Golse, and Daniel Han-Kwan
- Subjects
Regularity ,Non-Relativistic limit ,Théorie cinétique ,Limite non-Relativiste ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,EDPs ,Vlasov-Maxwell ,Régularité ,PDEs ,Kinetic theory - Abstract
In this dissertation, we study the Vlasov-Maxwell system of partial differential equations, describing the evolution of the distribution function of charged particles in a plasma. More precisely, we study the regularity of solutions to this system, and the question of the non-relativstic limit.In the first part, we study a Toy-model, combining the Vlasov equation with a system of transport equations. We use the methods developed to obtain and imrpove the Glassey-Strauss criterion, which gives a sufficient condition under which strong solutions do not develop singularities. The loss of regularity occures when the speed of the particles is close to the characteristic speed of the joined hyperbolic system. The same phenomenon occures for the solutions of the Toy-model, but its structure is easier to handle.In the second part, we focus on the question of the non-relativistic limit. After a rescaling of the equations, the speed of light can be considered as a big parameter. When it tends to infinity, it is called the non-relativistic limit. At first order, the non-relativistic limit of the Vlasov-Maxwell system is the Vlasov-Poisson system. First, an iterative method giving arbitrary high non-relativistic approximations is established. These systems combine the Vlasov-equation with elliptic systems of equations, and are well-posed in some weigthed Sobolev spaces. We also prove a result on the non-relativistic limit to the Vlasov-Poisson system under the weaker assumption of boundedness of the macroscopic density. We study a functional quantifying the Wasserstein distance between weak solutions of both systems.; Cette thèse est consacrée à l'étude du système d'équations aux dérivées partielles de Vlasov-Maxwell qui décrit l'évolution au cours du temps de la fonction de distribution de particules chargées dans un plasma. Nos travaux portent plus particulièrement sur la régularité des solutions de ce système et le problème de la limite non-relativiste.Dans un premier temps, on étudie un modèle jouet combinant une équation de Vlasov et un système d'équations de transport. On utilise les méthodes utilisées pour obtenir et améliorer le critère de Glassey-Strauss qui donne une condition suffisante sous laquelle une solution forte du système de Vlasov-Maxwell ne développe pas de singularités. La perte de régularité se manifeste lorsque la vitesse des particules est proche de la vitesse de résonnance du système hyperbolique adjoint. Le même phénomène se produit pour les solutions de notre système jouet, mais il possède une structure moins complexe.Dans un deuxième temps, on aborde la question de la limite non relativiste. Après adimensionnement, la vitesse de la lumière peut être considérée comme un grand paramètre du système. Lorsque celui ci tend vers l'infini, on parle de limite non-relativiste. Au premier ordrer, la limite non relativiste du système de Vlasov-Maxwell est le système de Vlasov-Poisson. Dans un premier chapitre, on établit une méthode itérative qui permet formellement d'obtenir des systèmes couplant l'équation de Vlasov à un système elliptique et formant une approximation non relativiste d'ordre arbitrairement élevé du système de Vlasov-Maxwell. Ces systèmes sont de plus bien posés dans certains espaces de Sobolev. Dans un second chapitre on démontre un résultat de limite non relativiste vers le système de Vlasov-Poisson sous des conditions ne portant que sur la densité macroscopique de charges. Pour ce faire on étudie une fonctionnelle quantifiant la distance de Wasserstein entre les solutions faibles des deux systèmes.
- Published
- 2020
21. Sur le système de Vlasov-Maxwell : régularité et limite non relativiste
- Author
-
Brigouleix, Nicolas, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Paris, François Golse, Daniel Han-Kwan, and STAR, ABES
- Subjects
Regularity ,Non-Relativistic limit ,Théorie cinétique ,Limite non-Relativiste ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,EDPs ,Vlasov-Maxwell ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,Régularité ,PDEs ,Kinetic theory - Abstract
In this dissertation, we study the Vlasov-Maxwell system of partial differential equations, describing the evolution of the distribution function of charged particles in a plasma. More precisely, we study the regularity of solutions to this system, and the question of the non-relativstic limit.In the first part, we study a Toy-model, combining the Vlasov equation with a system of transport equations. We use the methods developed to obtain and imrpove the Glassey-Strauss criterion, which gives a sufficient condition under which strong solutions do not develop singularities. The loss of regularity occures when the speed of the particles is close to the characteristic speed of the joined hyperbolic system. The same phenomenon occures for the solutions of the Toy-model, but its structure is easier to handle.In the second part, we focus on the question of the non-relativistic limit. After a rescaling of the equations, the speed of light can be considered as a big parameter. When it tends to infinity, it is called the non-relativistic limit. At first order, the non-relativistic limit of the Vlasov-Maxwell system is the Vlasov-Poisson system. First, an iterative method giving arbitrary high non-relativistic approximations is established. These systems combine the Vlasov-equation with elliptic systems of equations, and are well-posed in some weigthed Sobolev spaces. We also prove a result on the non-relativistic limit to the Vlasov-Poisson system under the weaker assumption of boundedness of the macroscopic density. We study a functional quantifying the Wasserstein distance between weak solutions of both systems., Cette thèse est consacrée à l'étude du système d'équations aux dérivées partielles de Vlasov-Maxwell qui décrit l'évolution au cours du temps de la fonction de distribution de particules chargées dans un plasma. Nos travaux portent plus particulièrement sur la régularité des solutions de ce système et le problème de la limite non-relativiste.Dans un premier temps, on étudie un modèle jouet combinant une équation de Vlasov et un système d'équations de transport. On utilise les méthodes utilisées pour obtenir et améliorer le critère de Glassey-Strauss qui donne une condition suffisante sous laquelle une solution forte du système de Vlasov-Maxwell ne développe pas de singularités. La perte de régularité se manifeste lorsque la vitesse des particules est proche de la vitesse de résonnance du système hyperbolique adjoint. Le même phénomène se produit pour les solutions de notre système jouet, mais il possède une structure moins complexe.Dans un deuxième temps, on aborde la question de la limite non relativiste. Après adimensionnement, la vitesse de la lumière peut être considérée comme un grand paramètre du système. Lorsque celui ci tend vers l'infini, on parle de limite non-relativiste. Au premier ordrer, la limite non relativiste du système de Vlasov-Maxwell est le système de Vlasov-Poisson. Dans un premier chapitre, on établit une méthode itérative qui permet formellement d'obtenir des systèmes couplant l'équation de Vlasov à un système elliptique et formant une approximation non relativiste d'ordre arbitrairement élevé du système de Vlasov-Maxwell. Ces systèmes sont de plus bien posés dans certains espaces de Sobolev. Dans un second chapitre on démontre un résultat de limite non relativiste vers le système de Vlasov-Poisson sous des conditions ne portant que sur la densité macroscopique de charges. Pour ce faire on étudie une fonctionnelle quantifiant la distance de Wasserstein entre les solutions faibles des deux systèmes.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.