Back to Search
Start Over
L^1 averaging lemma for transport equations with Lipschitz force fields
- Publication Year :
- 2010
- Publisher :
- HAL CCSD, 2010.
-
Abstract
- The purpose of this note is to extend the $L^1$ averaging lemma of Golse and Saint-Raymond \cite{GolSR} to the case of a kinetic transport equation with a force field $F(x)\in W^{1,\infty}$. To this end, we will prove a local in time mixing property for the transport equation $\partial_t f + v.\nabla_x f + F.\nabla_v f =0$.<br />Comment: 15 pages, to be published in Kinetic and Related Models
- Subjects :
- Numerical Analysis
010102 general mathematics
Mathematical analysis
16. Peace & justice
Lipschitz continuity
Kinetic energy
01 natural sciences
Force field (chemistry)
010101 applied mathematics
Mathematics - Analysis of PDEs
Modeling and Simulation
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Nabla symbol
0101 mathematics
Convection–diffusion equation
Mathematical physics
Mathematics
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....e4c43d715dd4afcfb9fb1b1ef5819fa2