Back to Search Start Over

L^1 averaging lemma for transport equations with Lipschitz force fields

Authors :
Daniel Han-Kwan
Département de Mathématiques et Applications - ENS Paris (DMA)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

The purpose of this note is to extend the $L^1$ averaging lemma of Golse and Saint-Raymond \cite{GolSR} to the case of a kinetic transport equation with a force field $F(x)\in W^{1,\infty}$. To this end, we will prove a local in time mixing property for the transport equation $\partial_t f + v.\nabla_x f + F.\nabla_v f =0$.<br />Comment: 15 pages, to be published in Kinetic and Related Models

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....e4c43d715dd4afcfb9fb1b1ef5819fa2