1. Some Liouville theorems for Hénon type elliptic equations
- Author
-
Chao Wang, Dong Ye, Analyse, Géométrie et Modélisation (AGM - UMR 8088), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire de Mathématiques et Applications de Metz (LMAM), and Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)
- Subjects
010102 general mathematics ,Mathematical analysis ,Finite Morse index solution ,Type (model theory) ,35B45 ,01 natural sciences ,Liouville number ,Hénon equation ,010101 applied mathematics ,Nonlinear system ,finite Morse index solution MSC: 35J60 ,Euclidean geometry ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Liouville theorem ,Henon equation ,Stability ,Analysis ,Mathematics ,Mathematical physics - Abstract
We investigate here the nonlinear elliptic equations − Δ u = | x | α e u and − Δ u = | x | α | u | p − 1 u with α > − 2 , p > 1 and N ⩾ 2 . In particular, we prove some Liouville type theorems for weak solutions with finite Morse index in the low dimensional Euclidean spaces or half spaces.
- Published
- 2012
- Full Text
- View/download PDF