Back to Search Start Over

The little Grothendieck theorem and Khintchine inequalities for symmetric spaces of measurable operators

Authors :
Quanhua Xu
Françoise Lust-Piquard
Xu, Quanhua
Programme 'blanc' - Espaces L_p non-commutatifs, Probabilités quantiques, Espaces d'opérate et Applications - - NCLp2006 - ANR-06-BLAN-0015 - BLANC - VALID
Analyse, Géométrie et Modélisation (AGM - UMR 8088)
Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB)
Université de Bourgogne (UB)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
ANR-06-BLAN-0015,NCLp,Espaces L_p non-commutatifs, Probabilités quantiques, Espaces d'opérate et Applications(2006)
Source :
Journal of Functional Analysis, Journal of Functional Analysis, Elsevier, 2007, 244, pp.488-503
Publication Year :
2007
Publisher :
Elsevier BV, 2007.

Abstract

We prove the little Grothendieck theorem for any 2-convex noncommutative symmetric space. Let $\M$ be a von Neumann algebra equipped with a normal faithful semifinite trace $\t$, and let $E$ be an r.i. space on $(0, \8)$. Let $E(\M)$ be the associated symmetric space of measurable operators. Then to any bounded linear map $T$ from $E(\M)$ into a Hilbert space $\mathcal H$ corresponds a positive norm one functional $f\in E_{(2)}(\M)^*$ such that $$\forall x\in E(\M)\quad \|T(x)\|^2\le K^2 \|T\|^2 f(x^*x+xx^*),$$ where $E_{(2)}$ denotes the 2-concavification of $E$ and $K$ is a universal constant. As a consequence we obtain the noncommutative Khintchine inequalities for $E(\M)$ when $E$ is either 2-concave or 2-convex and $q$-concave for some $q<br />Comment: 14 pages. To appear in J. Funct. Anal

Details

ISSN :
00221236 and 10960783
Volume :
244
Database :
OpenAIRE
Journal :
Journal of Functional Analysis
Accession number :
edsair.doi.dedup.....5851aee41148e00410f56da0b1ad5920
Full Text :
https://doi.org/10.1016/j.jfa.2006.09.003