Back to Search
Start Over
The little Grothendieck theorem and Khintchine inequalities for symmetric spaces of measurable operators
- Source :
- Journal of Functional Analysis, Journal of Functional Analysis, Elsevier, 2007, 244, pp.488-503
- Publication Year :
- 2007
- Publisher :
- Elsevier BV, 2007.
-
Abstract
- We prove the little Grothendieck theorem for any 2-convex noncommutative symmetric space. Let $\M$ be a von Neumann algebra equipped with a normal faithful semifinite trace $\t$, and let $E$ be an r.i. space on $(0, \8)$. Let $E(\M)$ be the associated symmetric space of measurable operators. Then to any bounded linear map $T$ from $E(\M)$ into a Hilbert space $\mathcal H$ corresponds a positive norm one functional $f\in E_{(2)}(\M)^*$ such that $$\forall x\in E(\M)\quad \|T(x)\|^2\le K^2 \|T\|^2 f(x^*x+xx^*),$$ where $E_{(2)}$ denotes the 2-concavification of $E$ and $K$ is a universal constant. As a consequence we obtain the noncommutative Khintchine inequalities for $E(\M)$ when $E$ is either 2-concave or 2-convex and $q$-concave for some $q<br />Comment: 14 pages. To appear in J. Funct. Anal
- Subjects :
- Pure mathematics
Triple system
[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA]
Noncommutative symmetric spaces
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
01 natural sciences
010104 statistics & probability
symbols.namesake
47A63
FOS: Mathematics
0101 mathematics
Operator Algebras (math.OA)
Schur multipliers
Mathematics
Secondary 46L50
Mathematics::Operator Algebras
010102 general mathematics
Mathematical analysis
[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA]
Mathematics - Operator Algebras
Hilbert space
Noncommutative geometry
Khintchine inequalities
Functional Analysis (math.FA)
Mathematics - Functional Analysis
Linear map
Von Neumann algebra
Little Grothendieck theorem
Symmetric space
Bounded function
Norm (mathematics)
Primary 46L52
symbols
[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA]
Analysis
Subjects
Details
- ISSN :
- 00221236 and 10960783
- Volume :
- 244
- Database :
- OpenAIRE
- Journal :
- Journal of Functional Analysis
- Accession number :
- edsair.doi.dedup.....5851aee41148e00410f56da0b1ad5920
- Full Text :
- https://doi.org/10.1016/j.jfa.2006.09.003