1. The Effect of Stator–Rotor Slot Combination on Electromagnetic Vibration of High-Voltage Line-Starting Permanent Magnet Synchronous Motor
- Author
-
Yang, Cunxiang, Chen, Si, Qiu, Hongbo, Wang, Yiming, and Lian, Zhenxiang
- Abstract
High voltage line-starting permanent magnet synchronous motor (HVLSPMSM) have the advantages of induction motors in terms of ease of operation and maintenance. However, due to the slot structure of the stator and rotor, the electromagnetic force composition is complex, which causes the vibration characteristics of HVLSPMSM to change. In order to analyze the influence of stator–rotor slot combinations on the vibration of HVLSPMSM. In this paper, a 10 kV HVLSPMSM is taken as an example to study. Firstly, the mathematical model of HVLSPMSM is established and the air gap magnetic flux density distribution characteristics are obtained for different stator–rotor slot combinations. The expression of the air gap electromagnetic force density (AEFD) of HVLSPMSM is derived by Maxwell tensor method, and the effect of different stator–rotor slot combinations on AEFD is revealed. Further, based on the theory of stator tooth modulation, the sources of equivalent concentrated forces (ECFs) under for different stator–rotor slot combinations are analyzed and the effect of stator–rotor slot combinations on electromagnetic vibration is determined. Next, the electromagnetic–mechanical coupled model of HVLSPMSM is established, and the electromagnetic and vibration characteristics under different stator–rotor slot combinations are solved, and the effect of stator–rotor slot combinations on motor vibration is obtained. Finally, the electromagnetic experiment is conducted to validate the analysis.
- Published
- 2024
- Full Text
- View/download PDF