1. Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows
- Author
-
Pedro Costa, Jos Derksen, Stéphane Vincent, Wim-Paul Breugem, J.C. Brändle de Motta, Lian-Ping Wang, P. Barbaresco, Cheng Peng, Pascal Fede, Jean-Luc Estivalezes, Nicolas Renon, Eric Climent, Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Complexe de recherche interprofessionnel en aérothermochimie (CORIA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Delft University of Technology (TU Delft), Department of Mechanics (KTH), University of Aberdeen, University of Delaware [Newark], Southern University of Science and Technology of China (SUSTech), ONERA / DMPE, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Calcul en Midi-Pyrénées (CALMIP), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-PRES Université de Toulouse-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE), Institut National des Sciences Appliquées de Rouen - INSA (FRANCE), Office National d'Etudes et Recherches Aérospatiales - ONERA (FRANCE), Royal Institute of Technology – KTH (SWEDEN), Université de Rouen - UR (FRANCE), Université Paris Est Créteil Val de Marne - UPEC (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), University of Delaware Newark - UDEL (USA), Delft University of Technology - TU Delft (NETHERLANDS), Southern University of Science and Technology - SUSTech (CHINA), Université Paris-Est Marne-La-Vallée - UPEM (FRANCE), Department of Mechanics (Stockholm, Sweden), The French Aerospace Lab (Toulouse, France), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Laboratoire Modélisation et Simulation Multi-Echelle (MSME), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Southern University of Science and Technology (SUSTech), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-PRES Université de Toulouse-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
Particle statistics ,General Computer Science ,Mécanique des fluides ,Lattice Boltzmann methods ,FINITE-SIZE PARTICLE ,Direct numerical simulations ,01 natural sciences ,010305 fluids & plasmas ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Physics::Fluid Dynamics ,0103 physical sciences ,Initial value problem ,DIRECT NUMERICAL SIMULATION ,Penalty method ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,ECOULEMENT DE PARTICULE CHARGE ,Physics ,Turbulence ,PARTICLE-LADEN FLOW ,Numerical analysis ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,General Engineering ,Mechanics ,Immersed boundary method ,Particle-laden flows ,010101 applied mathematics ,Turbulence kinetic energy ,TURBULENCE ,Finite-size particles ,SIMULATION NUMERIQUE DIRECTE - Abstract
International audience; During the last decade, many approaches for resolved-particle simulation (RPS) have been developed for numerical studies of finite size particle-laden turbulent flows. In this paper, three RPS approaches are compared for a particle-laden decaying turbulence case. These methods are, the Volume-of-Fluid Lagrangian method, based on the viscosity penalty method (VoF-Lag); a direct forcing Immersed Boundary Method, based on a regularized delta-function approach for the fluid/solid coupling (IBM); and the Bounce Back scheme developed for Lattice Boltzmann method (LBM-BB). The physics and the numerical performances of the methods are analyzed. Modulation of turbulence is observed for all the methods, with a faster decay of turbulent kinetic energy compared to the single-phase case. Lagrangian particle statistics, such as the velocity probability density function and the velocity autocorrelation function, show minor differences among the three methods. However, major differences between the codes are observed in the evolution of the particle kinetic energy. These differences are related to the treatment of the initial condition when the particles are inserted in an initially single-phase turbulence. The averaged particle/fluid slip velocity is also analyzed, showing similar behavior as compared to the results referred in the literature. The computational performances of the different methods differ significantly. The VoF-Lag method appears to be computationally most expensive. Indeed, this method is not adapted to turbulent cases. The IBM and LBM-BB implementations show very good scaling.
- Published
- 2018
- Full Text
- View/download PDF