1. The Besicovitch covering property in the Heisenberg group revisited
- Author
-
Séverine Rigot, Sebastiano Nicolussi Golo, University of Birmingham [Birmingham], Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), and ANR-15-CE40-0018,SRGI,Géométrie sous-Riemannienne et Interactions(2015)
- Subjects
Unit sphere ,Pure mathematics ,Property (philosophy) ,010102 general mathematics ,Characterization (mathematics) ,Computer Science::Computational Geometry ,16. Peace & justice ,01 natural sciences ,symbols.namesake ,Differential geometry ,Mathematics - Metric Geometry ,Fourier analysis ,Simple (abstract algebra) ,0103 physical sciences ,symbols ,Heisenberg group ,28C15, 49Q15, 43A80 ,010307 mathematical physics ,Geometry and Topology ,0101 mathematics ,Invariant (mathematics) ,[MATH]Mathematics [math] ,[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
The Besicovitch covering property (BCP) is known to be one of the fundamental tools in measure theory, and more generally, a usefull property for numerous purposes in analysis and geometry. We prove both sufficient and necessary criteria for the validity of BCP in the first Heisenberg group equipped with a homogeneous distance. Beyond recovering all previously known results about the validity or non validity of BCP in this setting, we get simple descriptions of new large classes of homogeneous distances satisfying BCP. We also obtain a full characterization of rotationally invariant distances for which BCP holds in the first Heisenberg group under mild regularity assumptions about their unit sphere., Comment: 34 pages, 2 figures, to appear on J. Geom. Anal., suggestions of the referee addressed
- Published
- 2019
- Full Text
- View/download PDF