Back to Search
Start Over
Lusin approximation for horizontal curves in step 2 Carnot groups
- Publication Year :
- 2016
-
Abstract
- A Carnot group $\mathbb{G}$ admits Lusin approximation for horizontal curves if for any absolutely continuous horizontal curve $\gamma$ in $\mathbb{G}$ and $\varepsilon>0$, there is a $C^1$ horizontal curve $\Gamma$ such that $\Gamma=\gamma$ and $\Gamma'=\gamma'$ outside a set of measure at most $\varepsilon$. We verify this property for free Carnot groups of step 2 and show that it is preserved by images of Lie group homomorphisms preserving the horizontal layer. Consequently, all step 2 Carnot groups admit Lusin approximation for horizontal curves.<br />Comment: 25 pages
- Subjects :
- Mathematics - Differential Geometry
49Q15
Pure mathematics
Astrophysics::High Energy Astrophysical Phenomena
28C15
43A80
Analysis
Applied Mathematics
01 natural sciences
Measure (mathematics)
symbols.namesake
Mathematics - Metric Geometry
FOS: Mathematics
0101 mathematics
Mathematics
010102 general mathematics
Lie group
Carnot group
Metric Geometry (math.MG)
Absolute continuity
Functional Analysis (math.FA)
010101 applied mathematics
Mathematics - Functional Analysis
Differential Geometry (math.DG)
symbols
28C15, 49Q15, 43A80
Homomorphism
Carnot cycle
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....a6f54cea672a0d9ad935240a66098210