Back to Search Start Over

Besicovitch Covering Property on graded groups and applications to measure differentiation

Authors :
Séverine Rigot
Enrico Le Donne
Department of Mathematics and Statistics [Jyväskylä Univ] (JYU)
University of Jyväskylä (JYU)
Laboratoire Jean Alexandre Dieudonné (JAD)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
ANR-12-BS01-0014,GEOMETRYA,Théorie géométrique de la mesure et applications(2012)
ANR-15-CE40-0018,SRGI,Géométrie sous-Riemannienne et Interactions(2015)
Source :
Journal für die reine und angewandte Mathematik, Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2019, 750, pp.241-297. ⟨10.1515/crelle-2016-0051⟩
Publication Year :
2015

Abstract

We give a complete answer to which homogeneous groups admit homogeneous distances for which the Besicovitch Covering Property (BCP) holds. In particular, we prove that a stratified group admits homogeneous distances for which BCP holds if and only if the group has step 1 or 2. These results are obtained as consequences of a more general study of homogeneous quasi-distances on graded groups. Namely, we prove that a positively graded group admits continuous homogeneous quasi-distances satisfying BCP if and only if any two different layers of the associated positive grading of its Lie algebra commute. The validity of BCP has several consequences. Its connections with the theory of differentiation of measures is one of the main motivations of the present paper. As a consequence of our results, we get for instance that a stratified group can be equipped with some homogeneous distance so that the differentiation theorem holds for each locally finite Borel measure if and only if the group has step 1 or 2. The techniques developed in this paper allow also us to prove that sub-Riemannian distances on stratified groups of step 2 or higher never satisfy BCP. Using blow-up techniques this is shown to imply that on a sub-Riemannian manifold the differentiation theorem does not hold for some locally finite Borel measure.<br />57 pages

Details

Language :
English
ISSN :
00754102 and 14355345
Database :
OpenAIRE
Journal :
Journal für die reine und angewandte Mathematik, Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2019, 750, pp.241-297. ⟨10.1515/crelle-2016-0051⟩
Accession number :
edsair.doi.dedup.....6b50d65f6dfc611cd2c1c08836682b85
Full Text :
https://doi.org/10.1515/crelle-2016-0051⟩