1. Poly(amidoamine) dendrimer as an interfacial dipole modification in crystalline silicon solar cells
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. MNT-Solar - Grup de Micro i Nano Tecnologies per Energia Solar, Tom, Thomas, Ros Costals, Eloi, Lopez Vidrier, Julià, Asensi López, José Miguel, Ortega Villasclaras, Pablo Rafael, Puigdollers i González, Joaquim, Bertomeu Balagueró, Joan, Voz Sánchez, Cristóbal, Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. MNT-Solar - Grup de Micro i Nano Tecnologies per Energia Solar, Tom, Thomas, Ros Costals, Eloi, Lopez Vidrier, Julià, Asensi López, José Miguel, Ortega Villasclaras, Pablo Rafael, Puigdollers i González, Joaquim, Bertomeu Balagueró, Joan, and Voz Sánchez, Cristóbal
- Abstract
This document is the Accepted Manuscript version of a Published Work that appeared in final form in The journal of physical chemistry letters, copyright © 2023 The Authors. Published by American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/full/10.1021/acs.jpclett.3c00643, Poly(amidoamine) (PAMAM) dendrimers are used to modify the interface of metal-semiconductor junctions. The large number of protonated amines contributes to the formation of a dipole layer, which finally serves to form electron-selective contacts in silicon heterojunction solar cells. By modification of the work function of the contacts, the addition of the PAMAM dendrimer interlayer quenches Fermi level pinning, thus creating an ohmic contact between the metal and the semiconductor. This is supported by the observation of a low contact resistivity of 4.5 mO cm2 , the shift in work function, and the n-type behavior of PAMAM dendrimer films on the surface of crystalline silicon. A silicon heterojunction solar cell containing the PAMAM dendrimer interlayer is presented, which achieved a power conversion efficiency of 14.5%, an increase of 8.3% over the reference device without the dipole interlayer., This research has been supported by the Spanish government through Grants PID2019-109215RB-C41, PID2019- 109215RB-C43, and PID2020-116719RB-C41 funded by MCIN/AEI/10.13039/501100011033. Thomas Tom acknowledges the support of the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya and the European Social Fund (2019 FI_B 00456). In addition, the authors thank the technical staff from Barcelona Research Center in Multiscale Science and Engineering from the Universitat Politecnica ̀ de Catalunya for their expertise and helpful discussions over the XPS results, Dr. Oriol Arteaga from the Universitat de Barcelona for the ellipsometry measurements, and Guillaume Sauthier from the Catalan Institute of Nanoscience and Nanotechnology for his contribution to UPS measurements and their discussion., Peer Reviewed, Postprint (published version)
- Published
- 2023