Back to Search Start Over

Expanding the perspective of polymeric selective contacts in photovoltaic devices using branched polyethylenimine

Authors :
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Universitat Politècnica de Catalunya. Doctorat en Enginyeria Electrònica
Universitat Politècnica de Catalunya. MNT-Solar - Grup de Micro i Nano Tecnologies per Energia Solar
Ros Costals, Eloi
Tom, Thomas
Rovira Ferrer, David
Lopez Vidrier, Julià
Masmitjà Rusiñol, Gerard
Pusay Villarroel, Benjamín Andrés
Almache Hernández, Rosa Estefanía
Martín García, Isidro
Jiménez Guerra, Maykel
Saucedo Silva, Edgardo Ademar
Tormos, Eva
Asensi López, José Miguel
Ortega Villasclaras, Pablo Rafael
Bertomeu Balagueró, Joan
Puigdollers i González, Joaquim
Voz Sánchez, Cristóbal
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Universitat Politècnica de Catalunya. Doctorat en Enginyeria Electrònica
Universitat Politècnica de Catalunya. MNT-Solar - Grup de Micro i Nano Tecnologies per Energia Solar
Ros Costals, Eloi
Tom, Thomas
Rovira Ferrer, David
Lopez Vidrier, Julià
Masmitjà Rusiñol, Gerard
Pusay Villarroel, Benjamín Andrés
Almache Hernández, Rosa Estefanía
Martín García, Isidro
Jiménez Guerra, Maykel
Saucedo Silva, Edgardo Ademar
Tormos, Eva
Asensi López, José Miguel
Ortega Villasclaras, Pablo Rafael
Bertomeu Balagueró, Joan
Puigdollers i González, Joaquim
Voz Sánchez, Cristóbal
Publication Year :
2022

Abstract

This work studies the use of polymeric layers of polyethylenimine (PEI) as an interface modification of electron-selective contacts. A clearly enhanced electrical transport with lower contact resistance and significant surface passivation (about 3 ms) can be achieved with PEI modification. As for other conjugated polyelectrolytes, protonated groups of the polymer with their respective counter anions from the solvent create an intense dipole. In this work, part of the amine groups in PEI are protonated by ethanol that behaves as a weak Brønsted acid during the process. A comprehensive characterization including high-resolution compositional analysis confirms the formation of a dipolar interlayer. The PEI modification is able to eliminate completely Fermi-level pinning at metal/semiconductor junctions and shifts the work function of the metallic electrode by more than 1 eV. Induced charge transport between the metal and the semiconductor allows the formation of an electron accumulation region. Consequently, electron-selective contacts are clearly improved with a significant reduction of the specific contact resistance (less than 100 mO·cm2). Proof-of-concept dopant-free solar cells on silicon were fabricated to demonstrate the beneficial effect of PEI dipolar interlayers. Full dopant-free solar cells with conversion efficiencies of about 14% could be fabricated on flat wafers. The PEI modification also improved the performance of classical high-efficiency heterojunction solar cells.<br />This research has been supported by the Spanish government through Grants PID2019-109215RB-C41, PID2019109215RB-C43, PID2020-115719RB-C21, and PID2020116719RB-C41 and funded by MCIN/AEI/10.13039/ 501100011033. Besides this the authors would like to thank Prof. Jordi LLorca for his expertise and helpful discussions of XPS results, as well as Dr. Rodrigo Fernández-Pacheco of the Laboratorio de Microscopias Avanzadas (LMA-INA) of Zaragoza for the HRTEM images and EDS and EELS analysis, and Guillaume Sauthier from ICN2 for his contribution through UPS measurements and discussions.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
8 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1355845125
Document Type :
Electronic Resource