1. The driving force for solute retention in electron donor-acceptor chromatography: Electrostatic versus charge-transfer interactions.
- Author
-
Wan, Q., Ramaley, L., and Guy, R.
- Abstract
Charge-transfer interactions are often assumed to be dominant among the noncovalent interactions that govern the solute retention in electron donor-acceptor chromatography. This popular view, however, has been called into question by recent studies that suggest an important role for electrostatic interactions in the formation of donor-acceptor complexes. We reported here an experimental investigation concerning the question as to whether charge-transfer or electrostatic interactions are the driving force for solute retention in donor-acceptor chromatography. Using three chromatographic systems composed of a dinitrobenzene derived stationary phase and a hexane based mobile phase, we determined retention factors for a range of aliphatic and aromatic hydrocarbons and correlated them with molecular properties that describe the solute's dispersion, charge-transfer, and electrostatic characteristics. It was found that the molecular polarizability and ionization potential give either very poor or no correlation with solute retention whereas the molecular quadrupole moment is a linear function of the logarithmic retention factor. These results were interpreted as showing that electrostatic, rather than charge-transfer or dispersion, interactions play a major role in determining solute retention. The dominance of the electrostatic interactions over the other noncovalent interactions was discussed in terms of distance dependency of the interaction energy. [ABSTRACT FROM AUTHOR]
- Published
- 1998
- Full Text
- View/download PDF