Back to Search Start Over

An improved RRT behavioral planning method for robots based on PTM algorithm

Authors :
Chuanyu Cui
Zuoxun Wang
Jinxue Sui
Yong Zhang
Changkun Guo
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-17 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract For multi-dimensional high-order nonlinear systems with unstable path quality in parameter and extension terms, we developed a new fast search random tree strategy. First, we established a high-order Lipschitz vector field dynamic system to adapt to high-order systems of multi-degree-of-freedom robots, with the complex obstacle function being one of its key components. Secondly, we designed a classification gap filtering network layer (Classification LSTM) to screen training data models and ensure the global stability of data in path design. Additionally, the visual sensors deployed in the unit area effectively implement the path marking backtracking strategy and dead zone path simplification. Finally, three examples are provided to verify the effectiveness of this design method.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.3519670cac3a4b18ac1e4e10932961f5
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-72616-4