Back to Search Start Over

Computational analysis of vertical comb-drive microactuator with extended mirror for manipulation of light.

Authors :
Sharma, Varun P.
Ganguli, Tapas
Shukla, Rahul
Source :
Journal of Vacuum Science & Technology: Part B-Nanotechnology & Microelectronics; Dec2022, Vol. 40 Issue 6, p1-9, 9p
Publication Year :
2022

Abstract

Squeeze film damping is a dominant mechanism to examine the losses in the micro-opto-electro-mechanical systems. It plays an important role in understanding the dynamic performance of vertical-comb drive (VCD) microactuator. In the present paper, finite element method is used to estimate the Q factor and damping ratio at varying ambient pressures ranging from atmospheric (10<superscript>5</superscript> Pa) to vacuum (0.1 Pa) in COMSOL Multiphysics. The effect of ambient pressure on dynamic performance of the VCD is discussed in detail. Based on the applications, two different VCDs (VCD-L and VCD-SR) with extended micromirrors have been proposed in the current study for the manipulation of light. VCD-L having lower eigen frequency of 670 Hz can be used in laser and biomedical applications. VCD-SR with higher eigen frequency nearly 90 kHz has the potential use in a synchrotron radiation source. In addition, a parametric study is done to understand the performance of VCD for varying process parameters such as variable offset length among the comb fingers, spring dimensions, and orientation of single crystal silicon. For spring design, the von-Mises stress theory is preferred over maximum shear stress theory. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21662746
Volume :
40
Issue :
6
Database :
Complementary Index
Journal :
Journal of Vacuum Science & Technology: Part B-Nanotechnology & Microelectronics
Publication Type :
Academic Journal
Accession number :
162054138
Full Text :
https://doi.org/10.1116/6.0002190