Back to Search Start Over

A state-of-the-art survey of object detection techniques in microorganism image analysis: from classical methods to deep learning approaches.

Authors :
Ma, Pingli
Li, Chen
Rahaman, Md Mamunur
Yao, Yudong
Zhang, Jiawei
Zou, Shuojia
Zhao, Xin
Grzegorzek, Marcin
Source :
Artificial Intelligence Review; Feb2023, Vol. 56 Issue 2, p1627-1698, 72p
Publication Year :
2023

Abstract

Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in detecting uncommon microorganisms. Therefore, it is meaningful to apply computer image analysis technology to the field of microorganism detection. Computer image analysis can realize high-precision and high-efficiency detection of microorganisms. In this review, first,we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. In the end, the future development direction and challenges of microorganism detection are discussed. In general, we have summarized 142 related technical papers from 1985 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of microorganism detection and provide a reference for researchers in other fields. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02692821
Volume :
56
Issue :
2
Database :
Complementary Index
Journal :
Artificial Intelligence Review
Publication Type :
Academic Journal
Accession number :
161581492
Full Text :
https://doi.org/10.1007/s10462-022-10209-1