Cite
A state-of-the-art survey of object detection techniques in microorganism image analysis: from classical methods to deep learning approaches.
MLA
Ma, Pingli, et al. “A State-of-the-Art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches.” Artificial Intelligence Review, vol. 56, no. 2, Feb. 2023, pp. 1627–98. EBSCOhost, https://doi.org/10.1007/s10462-022-10209-1.
APA
Ma, P., Li, C., Rahaman, M. M., Yao, Y., Zhang, J., Zou, S., Zhao, X., & Grzegorzek, M. (2023). A state-of-the-art survey of object detection techniques in microorganism image analysis: from classical methods to deep learning approaches. Artificial Intelligence Review, 56(2), 1627–1698. https://doi.org/10.1007/s10462-022-10209-1
Chicago
Ma, Pingli, Chen Li, Md Mamunur Rahaman, Yudong Yao, Jiawei Zhang, Shuojia Zou, Xin Zhao, and Marcin Grzegorzek. 2023. “A State-of-the-Art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches.” Artificial Intelligence Review 56 (2): 1627–98. doi:10.1007/s10462-022-10209-1.