Back to Search Start Over

Lactobacillus casei Zhang prevents hippocampal atrophy and cognitive impairment in rats with type 2 diabetes by regulating blood glucose levels.

Authors :
Cai Y
Wang X
Chen X
Liu S
Cheng L
Kang Y
Lin F
Source :
Brain research [Brain Res] 2024 Dec 18; Vol. 1850, pp. 149407. Date of Electronic Publication: 2024 Dec 18.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Purpose: Lactobacillus casei Zhang (LCZ) has health benefits, such as the ability to improve blood glucose levels in individuals with type 2 diabetes mellitus (T2DM). However, little is known about the effects of LCZ on brain structural plasticity and cognitive function in T2DM. The aims of this study were to determine whether LCZ can prevent and alleviate brain damage and memory impairment in T2DM, and to understand the mechanisms underlying the effects of LCZ in T2DM.<br />Methods: Forty-one male Sprague-Dawley rats were divided into the saline control (CON, n = 14), T2DM (n = 14) and T2DM + LCZ (n = 13) groups. Magnetic resonance imaging (MRI) was used to evaluate alterations in brain structure among these three groups. The novel object recognition and Y-maze tests were conductedto assess cognitive function. Histological and immunohistochemical analysis, including Nissl staining, Golgi-Cox staining and glial fibrillary acidic protein immunostaining, were performed to explore the pathophysiological mechanisms underlying brain structural changes.<br />Results: T2DM rats presented hyperglycemia, cognitive decline, hippocampal atrophy, and damage to hippocampal neurons and astrocytes. Compared with those in the T2DM groups, rats in the T2DM + LCZ group presented lower blood glucose levels, better cognitive function, a larger hippocampal volume, and more normal hippocampal neurons and astrocytes. There was no significant difference in these metrics between rats in the T2DM + LCZ and CON groups.<br />Conclusion: Hyperglycemia-induced damage to hippocampal neurons and astrocytes may lead to hippocampal atrophy and cognitive dysfunction in T2DM. LCZ can effectively prevent this damage by regulating blood glucose levels, preventing brain atrophy and cognitive impairment in T2DM rats. These findings provide a scientific basis for the clinical application of LCZ.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-6240
Volume :
1850
Database :
MEDLINE
Journal :
Brain research
Publication Type :
Academic Journal
Accession number :
39706238
Full Text :
https://doi.org/10.1016/j.brainres.2024.149407