Back to Search Start Over

Potentials of dietary fiber and polyphenols in whole grain wheat flour to release the liver function and intestinal tract injury in lead-induced mice.

Authors :
Zheng J
Huang T
Fan F
Jiang X
Li P
Ding J
Sun X
Li Z
Fang Y
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Oct; Vol. 278 (Pt 2), pp. 134180. Date of Electronic Publication: 2024 Jul 27.
Publication Year :
2024

Abstract

The presence of lead as an environmental pollutant is widespread. However, safe and effective treatments for the resulting intestinal and liver damage from high levels of lead exposure remain limited. The study aimed to investigate the protective effects of dietary fiber and polyphenols in whole grain wheat flour on lead-induced mice. The results indicated that the daily intake of 12 mg of polyphenols, 0.5 g of dietary fiber, and their combination effectively reduced blood and liver lead accumulation by approximately 50 % in mice exposed to lead, while also mitigating lead-induced oxidative stress though a reduction in malondialdehyde levels and an enhancement in antioxidant enzyme activities including superoxide dismutase, catalase, and glutathione peroxidase. Furthermore, all three treatments enhanced cytokine secretion with the combined treatment exhibiting the highest efficacy. Specifically, the combination treatment decreased tumor necrosis factor-α and interleukin 1β by 56.78 %, 47.86 % in intestinal tissue while increasing increased interleukin 4 and interleukin 10 by 81.84 %, 145.14 %. Additionally, it promoted the expression of tight junction proteins like Zonula occludens-1, Occludin and Claudin-1. The study presented a potential strategy for alleviating liver and intestinal tract damage from high-dose lead exposure.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
278
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
39074696
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.134180