Back to Search Start Over

Glomus intraradices causes differential changes in amino acid and starch concentrations of in vitro strawberry subjected to water stress.

Authors :
Hernández-Sebastià C
Samson G
Bernier PY
Piché Y
Desjardins Y
Source :
The New phytologist [New Phytol] 2000 Oct; Vol. 148 (1), pp. 177-186.
Publication Year :
2000

Abstract

The effect of colonization of tissue-cultured strawberry (Fragaria×ananassa Duch. cv. Kent) plantlets in vitro by the arbuscular mycorrhizal fungus (AMF) Glomus intraradices on plantlet response to poly(ethylene glycol) (PEG)-8000-induced water stress was investigated. The plantlets were inoculated axenically and co-cultured with the AMF for 4 wk, then transferred to 15% PEG-8000 solutions for 4, 8 and 12 h. Relative water content, water potential, osmotic potential, leaf conductance for water vapour diffusion and photosynthetic efficiency as estimated by chlorophyll a fluorescence were all affected by the PEG treatment and its duration but not by the presence of the intraradical phase of the AMF. However, distinct differences in PEG-induced changes in amino acid content were observed between nonmycorrhizal and mycorrhizal plantlets. In the latter, the treatment with PEG caused a substantial decrease in asparagine levels in leaves that was accompanied by a marked increase in asparagine concentration in roots. The opposite was observed in nonmycorrhizal plantlets. Furthermore, concentrations of aspartic acid, serine, threonine, amino-N-butyric acid, alanine and starch increased in roots of mycorrhizal and decreased in nonmycorrhizal plantlets. Our results suggest the presence of a mobile pool of asparagine that can be translocated from leaves to roots or vice versa in response to PEG-induced water stress, depending on the mycorrhizal status of the plantlets. These opposite patterns suggest different strategies of mycorrhizal and nonmycorrhizal plantlets to water stress, which seem to involve different adjustments in nitrogen and carbon metabolism.

Details

Language :
English
ISSN :
1469-8137
Volume :
148
Issue :
1
Database :
MEDLINE
Journal :
The New phytologist
Publication Type :
Academic Journal
Accession number :
33863035
Full Text :
https://doi.org/10.1046/j.1469-8137.2000.00744.x