Back to Search Start Over

Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

Authors :
Rosa M
Hilal M
González JA
Prado FE
Source :
Plant physiology and biochemistry : PPB [Plant Physiol Biochem] 2009 Apr; Vol. 47 (4), pp. 300-7. Date of Electronic Publication: 2008 Dec 16.
Publication Year :
2009

Abstract

The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

Details

Language :
English
ISSN :
0981-9428
Volume :
47
Issue :
4
Database :
MEDLINE
Journal :
Plant physiology and biochemistry : PPB
Publication Type :
Academic Journal
Accession number :
19124255
Full Text :
https://doi.org/10.1016/j.plaphy.2008.12.001