Back to Search Start Over

Polyphenolic Characterization and Anti-Inflammatory Effect of In Vitro Digested Extracts of Echinacea purpurea L. Plant Parts in an Inflammatory Model of Human Colon Cells.

Authors :
Ávila-Gálvez, María Ángeles
Giménez-Bastida, Juan Antonio
Karadeniz, Bulent
Romero-Reyes, Salvador
Espín, Juan Carlos
Pelvan, Ebru
González-Sarrías, Antonio
Source :
International Journal of Molecular Sciences. Feb2024, Vol. 25 Issue 3, p1744. 17p.
Publication Year :
2024

Abstract

Echinacea purpurea L. (EP) preparations are globally popular herbal supplements known for their medicinal benefits, including anti-inflammatory activities, partly related to their phenolic composition. However, regarding their use for the management of inflammation-related intestinal diseases, the knowledge about the fate of orally ingested constituents throughout the human gastrointestinal tract and the exposition of in vitro digested extracts in relevant inflammatory models are unknown. This study investigated for the first time the impact of in vitro gastrointestinal digestion (INFOGEST) on the phenolic composition and anti-inflammatory properties of EP extracts from flowers (EF), leaves (EL), and roots (ER) on IL-1β-treated human colon-derived CCD-18Co cells. Among the seven hydroxycinnamic acids identified using HPLC-UV-MS/MS, chicoric and caftaric acids showed the highest concentrations in EL, followed by EF and ER, and all extracts exerted significant reductions in IL-6, IL-8, and PGE2 levels. After digestion, despite reducing the bioaccessibility of their phenolics, the anti-inflammatory effects were preserved for digested EL and, to a lesser extent, for EF, but not for digested ER. The lower phenolic content in digested EF and ER could explain these findings. Overall, this study emphasizes the potential of EP in alleviating intestinal inflammatory conditions and related disorders. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
3
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
175373088
Full Text :
https://doi.org/10.3390/ijms25031744