Back to Search Start Over

Quasi Real-Time Apple Defect Segmentation Using Deep Learning.

Authors :
Agarla, Mirko
Napoletano, Paolo
Schettini, Raimondo
Source :
Sensors (14248220). Sep2023, Vol. 23 Issue 18, p7893. 19p.
Publication Year :
2023

Abstract

Defect segmentation of apples is an important task in the agriculture industry for quality control and food safety. In this paper, we propose a deep learning approach for the automated segmentation of apple defects using convolutional neural networks (CNNs) based on a U-shaped architecture with skip-connections only within the noise reduction block. An ad-hoc data synthesis technique has been designed to increase the number of samples and at the same time to reduce neural network overfitting. We evaluate our model on a dataset of multi-spectral apple images with pixel-wise annotations for several types of defects. In this paper, we show that our proposal outperforms in terms of segmentation accuracy general-purpose deep learning architectures commonly used for segmentation tasks. From the application point of view, we improve the previous methods for apple defect segmentation. A measure of the computational cost shows that our proposal can be employed in real-time (about 100 frame-per-second on GPU) and in quasi-real-time (about 7/8 frame-per-second on CPU) visual-based apple inspection. To further improve the applicability of the method, we investigate the potential of using only RGB images instead of multi-spectral images as input images. The results prove that the accuracy in this case is almost comparable with the multi-spectral case. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
18
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
172417757
Full Text :
https://doi.org/10.3390/s23187893