Back to Search Start Over

Static and Dynamic Performance Prediction of Ultrahigh-Voltage Silicon Carbide Insulated-Gate Bipolar Transistors.

Authors :
Johannesson, Daniel
Nawaz, Muhammad
Norrga, Staffan
Hallen, Anders
Nee, Hans-Peter
Source :
IEEE Transactions on Power Electronics. May2021, Vol. 36 Issue 5, p5874-5891. 18p.
Publication Year :
2021

Abstract

The performance of theoretical ultrahigh-voltage power semiconductor devices has been predicted by means of numerical simulations using the Sentaurus technology computer-aided design tool. A general silicon carbide punch-through insulated-gate bipolar transistor (IGBT) structure has been implemented with suitable physics-based models and parameters to reflect the device characteristics in a wide range of device blocking voltages from 20 to 50 kV. The models for 20 kV class IGBTs have been implicitly validated by means of published experimental results. Mixed-mode simulations were performed that predicted total switching energy loss densities of 335, 629, 906, and 999 mJ/cm2 for 20, 30, 40, and 50 kV class devices, respectively, at 25 °C, JC = 20 A/cm2, and an ambipolar carrier lifetime of 20 μs. While the IGBT on-state forward voltage drop reduces, the switching losses increase with higher charge-carrier lifetime for a given current density (e.g., 20 A/cm2). The large span of simulation results will be used as an input support to the design of future high-power converters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858993
Volume :
36
Issue :
5
Database :
Academic Search Index
Journal :
IEEE Transactions on Power Electronics
Publication Type :
Academic Journal
Accession number :
148380745
Full Text :
https://doi.org/10.1109/TPEL.2020.3027370