Back to Search
Start Over
Static and Dynamic Performance Prediction of Ultrahigh-Voltage Silicon Carbide Insulated-Gate Bipolar Transistors.
- Source :
-
IEEE Transactions on Power Electronics . May2021, Vol. 36 Issue 5, p5874-5891. 18p. - Publication Year :
- 2021
-
Abstract
- The performance of theoretical ultrahigh-voltage power semiconductor devices has been predicted by means of numerical simulations using the Sentaurus technology computer-aided design tool. A general silicon carbide punch-through insulated-gate bipolar transistor (IGBT) structure has been implemented with suitable physics-based models and parameters to reflect the device characteristics in a wide range of device blocking voltages from 20 to 50 kV. The models for 20 kV class IGBTs have been implicitly validated by means of published experimental results. Mixed-mode simulations were performed that predicted total switching energy loss densities of 335, 629, 906, and 999 mJ/cm2 for 20, 30, 40, and 50 kV class devices, respectively, at 25 °C, JC = 20 A/cm2, and an ambipolar carrier lifetime of 20 μs. While the IGBT on-state forward voltage drop reduces, the switching losses increase with higher charge-carrier lifetime for a given current density (e.g., 20 A/cm2). The large span of simulation results will be used as an input support to the design of future high-power converters. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 08858993
- Volume :
- 36
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- IEEE Transactions on Power Electronics
- Publication Type :
- Academic Journal
- Accession number :
- 148380745
- Full Text :
- https://doi.org/10.1109/TPEL.2020.3027370