Back to Search Start Over

Nano-Intrinsic True Random Number Generation: A Device to Data Study.

Authors :
Kim, Jeeson
Nili, Hussein
Truong, Nhan Duy
Ahmed, Taimur
Yang, Jiawei
Jeong, Doo Seok
Sriram, Sharath
Ranasinghe, Damith C.
Ippolito, Samuel
Chun, Hosung
Kavehei, Omid
Source :
IEEE Transactions on Circuits & Systems. Part I: Regular Papers. Jul2019, Vol. 66 Issue 7, p2615-2626. 12p.
Publication Year :
2019

Abstract

We present a circuit technique to extract true random numbers from carrier capture and emission in oxide traps in the emerging redox-based resistive memory (ReRAM). This phenomenon that appears as small changes in current magnitude passing through the device is known as random telegraph noise (RTN) and is increasingly becoming a source of reliability issues in nanometer-scale devices. We demonstrate a circuit that exploits TRN suitable for a true random number generator (TRNG) in security applications, where the system is secure from different adversarial attacks, including side-channel monitoring and machine learning analysis. We experimentally characterize RTN in ReRAMs and extract its dependency to temperature, voltage, and area. We introduce an RTN harvesting circuit to mitigate sensitivities to temperature fluctuations, injected supply noise, and power signal monitoring. We reduced bias and imbalance in data due to high-speed sampling via von Neumann whitening. The circuit is compared to conventional non-differential readout approach. Our approach shows a 7.26 times improvement in autocorrelation and significant resilience against the injected supply noise. We also demonstrate the TRNG’s quality and robustness using statistical tests and machine learning attacks. The output of the generator satisfies statistical tests for randomness and is immune to modeling attacks based on the machine learning methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15498328
Volume :
66
Issue :
7
Database :
Academic Search Index
Journal :
IEEE Transactions on Circuits & Systems. Part I: Regular Papers
Publication Type :
Periodical
Accession number :
137116443
Full Text :
https://doi.org/10.1109/TCSI.2019.2895045