1. Generalized Schrödinger Semigroups on Infinite Graphs
- Author
-
Françoise Truc, Batu Güneysu, Ognjen Milatovic, Institut für Mathematik [Berlin], Technische Universität Berlin (TU), Department of Mathematics and statistics University of North Florida (UNF), University of North Florida [Jacksonville] (UNF), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Technische Universität Berlin (TUB), University of North Florida, Institut Fourier (IF), and Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
Discrete mathematics ,Markov process ,60J27, 47D08, 35R60 ,Vector bundle ,Feynman–Kac formula ,covariant Schrödinger operators ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,16. Peace & justice ,Hermitian matrix ,Potential theory ,Mathematics - Functional Analysis ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Feynman-Kac-type representations ,symbols.namesake ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,symbols ,vector bundles over weighted graphs ,Special classes of semigroups ,Mathematical Physics ,Mathematics - Probability ,Analysis ,Schrödinger's cat ,Mathematics - Abstract
International audience; With appropriate notions of Hermitian vector bundles and connections over weighted graphs which we allow to be locally infinite, we prove Feynman-Kac-type representations for the corresponding semigroups and derive several applications thereof.
- Published
- 2013
- Full Text
- View/download PDF