Back to Search
Start Over
Generalized Schrödinger Semigroups on Infinite Graphs
- Source :
- Potential Analysis, Potential Analysis, Springer Verlag, 2014, 41 (2), pp.517-541. ⟨10.1007/s11118-013-9381-6⟩
- Publication Year :
- 2013
- Publisher :
- Springer Science and Business Media LLC, 2013.
-
Abstract
- International audience; With appropriate notions of Hermitian vector bundles and connections over weighted graphs which we allow to be locally infinite, we prove Feynman-Kac-type representations for the corresponding semigroups and derive several applications thereof.
- Subjects :
- Discrete mathematics
Markov process
60J27, 47D08, 35R60
Vector bundle
Feynman–Kac formula
covariant Schrödinger operators
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
16. Peace & justice
Hermitian matrix
Potential theory
Mathematics - Functional Analysis
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Feynman-Kac-type representations
symbols.namesake
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
symbols
vector bundles over weighted graphs
Special classes of semigroups
Mathematical Physics
Mathematics - Probability
Analysis
Schrödinger's cat
Mathematics
Subjects
Details
- ISSN :
- 1572929X and 09262601
- Volume :
- 41
- Database :
- OpenAIRE
- Journal :
- Potential Analysis
- Accession number :
- edsair.doi.dedup.....2bd358fd429113f6888f9a23009ed443
- Full Text :
- https://doi.org/10.1007/s11118-013-9381-6