1. Задача Коши для нагруженного линейного уравнения с частными производными первого порядка
- Author
-
Аттаев, А.Х.
- Subjects
дифференциальные уравнения с частными производными ,нагруженное дифференциальное уравнение ,задача коши ,интегральное уравнение ,метод последовательных подстановок ,характеристики дифференциального уравнения ,корректная задача ,differential equations ,loaded differential equation ,cauchy problem ,integral equation ,method of successive substitutions ,characteristics of a differential equation ,well-posed problem ,Science - Abstract
Как хорошо известно, наличие характеристик является очень существенным при исследовании задачи Коши для дифференциальных уравнений с частными производными независимо от его порядка. В случае, если дифференциальное уравнение с частными производными является нагруженным, то для однозначной разрешимости задачи Коши возникают дополнительные условия разрешимости, зависящие от вида следа нагрузки. Эти условия возникают даже для простейших линейных нагруженных дифференциальных уравнений с частными производными, начиная с первого порядка и выше. Основная цель данной работы – проиллюстрировать возникающие эффекты на примере исследования задачи Коши для линейного нагруженного уравнения в частных производных первого порядка. Так как корректность поставленной задачи Коши эквивалентным образом редуцируется к интегральному уравнению второго рода, то основной метод, применяемый для доказательства его разрешимости – метод последовательных подстановок. Основной вывод заключается в том, что разрешимость задачи Коши для нагруженного уравнения в частных производных существенным образом зависит от выбора следа нагрузки. В случае, когда разрешимость задачи Коши доказана, оказывается, что область влияния данных Коши не ограничивается только характеристиками, а появляются новые не характеристические линии, за которые данные Коши однозначно продолжаться не могут.
- Published
- 2023
- Full Text
- View/download PDF