42 results on '"medical gases"'
Search Results
2. Physical Properties of Helium and Application in Respiratory Care
- Author
-
Eric Chappel
- Subjects
helium ,physical properties ,kinetic theory ,medical gases ,airway resistance ,work of breathing ,Science - Abstract
Helium is a low-density, inert, monoatomic gas that is widely used in medical applications. In respiratory care, Helium is mainly used as an adjunct therapy for patients with severe upper airway obstruction and asthma. To better understand the action mechanism of helium, the physical properties of several therapeutic gas mixtures with helium are calculated using kinetic theory. Flow in a simplified lung airways model is also shown to support the discussion of helium’s respiratory benefits, including reduced work of breathing.
- Published
- 2023
- Full Text
- View/download PDF
3. Physical Properties of Helium and Application in Respiratory Care.
- Author
-
Chappel, Eric
- Subjects
HELIUM ,RESPIRATORY obstructions ,GAS mixtures ,AIRWAY resistance (Respiration) - Abstract
Definition: Helium is a low-density, inert, monoatomic gas that is widely used in medical applications. In respiratory care, Helium is mainly used as an adjunct therapy for patients with severe upper airway obstruction and asthma. To better understand the action mechanism of helium, the physical properties of several therapeutic gas mixtures with helium are calculated using kinetic theory. Flow in a simplified lung airways model is also shown to support the discussion of helium's respiratory benefits, including reduced work of breathing. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Potential therapeutic applications of medical gases in cancer treatment.
- Author
-
Bazzal, Abbas Al, Hoteit, Bassel H., Chokor, Mariam, Safawi, Abdallah, Zibara, Zahraa, Rizk, Fatima, Kawssan, Aya, Danaf, Naseeb, Msheik, Layal, and Hamdar, Hiba
- Subjects
- *
HYPERBARIC oxygenation , *CARBON monoxide , *CARBON dioxide , *HYDROGEN sulfide , *TUMOR growth - Abstract
Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect. Nitric oxide has both anti- and pro-tumor effects depending on its level; at high doses, it triggers cell death while at low doses it supports cancer growth. The same concept is applied to hydrogen sulfide which promotes cancer growth by enhancing mitochondrial bioenergetics and supporting angiogenesis at low concentrations, while at high concentrations it induces cancer cell death while sparing normal cells. Furthermore, carbon dioxide helps induce apoptosis and improve oxygenation for cancer treatments by increasing the release of oxygen from hemoglobin. Moreover, high-dose carbon monoxide gas therapy has demonstrated significant tumor reductions in vivo and is supported by nanomedicine and specialized medicines to boost its delivery to tumor cells and the availability of hydrogen peroxide. Despite the promising potentials of these gases, several challenges remain. Gas concentrations should be regulated to balance pro-tumor and anti-tumor effects for gases such as nitric oxide and hydrogen sulfide. Furthermore, effective delivery systems, such as nanoparticles, should be developed for targeted therapy. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF
5. Medical Gas Systems Maintainability Risks in Healthcare Facilities: A Design Optimization Approach.
- Author
-
Alassafi, Hassan, Al-Gahtani, Khalid S., and Almohsen, Abdulmohsen S.
- Abstract
Medical gas pipeline systems (MGPSs) are crucial for operating healthcare facilities as life-saving systems. The sustainability of MGPSs mandates optimum performance by reducing maintenance and repairs. Since faulty design is inventible, healthcare facilities endure several design-caused maintenance issues that endanger the sustainability of healthcare services and maintenance life cycle costs. These design decisions could have been avoided if proper consideration for maintenance had been applied. Eleven experts participated in semi-structured interviews guided by Staticized Group Techniques to identify and evaluate the maintenance issues. The results included identifying 52 design-related maintenance issues that pose maintainability risks. The findings primarily fall under emergency gas supply availability, future expansion readiness, and accessibility of maintenance. The most critical issue found is the excessive cutting-outs of the pipelines when upgrading the system. For new healthcare facilities, the results of this research provide practical help for designers to avoid MGPS issues. A scarcity of benchmark research and geographical factors are some limitations to this study. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Medical gases.
- Author
-
Malein, William and Beecroft, Christina
- Abstract
Understanding the complex process of production, storage and delivery of medical gases is vitally important to ensure safe and efficient practice by anaesthetists. This article discusses the medical gases commonly used in anaesthesia and intensive care and details the journey of the commonly used medical gases from production to patient delivery. It includes core knowledge for the FRCA. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
7. Good practices in the management of medical gases in teaching hospitals in Brazil: situational diagnosis
- Author
-
Fábio J. AMORIM, Lincoln C. SANTOS, Fernando ARAÚJO-NETO, Lucimara M. ANDRADE, Dyego C. ARAÚJO, Izadora M. BARROS, and Divaldo P. LYRA-JR
- Subjects
medical gases ,good practices ,situation analysis. ,Public aspects of medicine ,RA1-1270 ,Pharmacy and materia medica ,RS1-441 ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Objective: To characterize compliance with good practices in medical gas management in federal teaching hospitals in Brazil. Methods: A cross-sectional survey-type study, designed to perform a situational diagnosis of the pharmacy services in 40 federal teaching hospitals in Brazil linked to the Brazilian Hospital Services Company, with respect to compliance with good practices in gas management, through the application of the ABPGasMed 1.0 instrument. This instrument consists of 54 compliance standards divided into two sections (structure and process). The characterization of research participants and hospitals, and the classification of hospitals in terms of performance categories were expressed as absolute and relative values. Chi-square tests of independence were performed to investigate the association between the hospital’s performance category and the hospital’s geographic region and size. Results: In total, 87.5% of the invited hospitals participated in the study, and only 27.59% of the hospitals had a pharmacist responsible for medicinal gases. Pharmacovigilance was performed by pharmacists in 20.59% of the hospitals. Analyzing the hospitals by region of the country and size, statistically significant associations were found between the general classification of hospitals and the geographic region (x2(8)=18.936, p= 0.015), as well as the classification of the hospital and structure and size (x2(9)= 20.373, p= 0.016). Analyses of the adjusted standardized residues returned an association between the southeastern region and the satisfactory performance category when analyzing the entire instrument, and between the excellent performance category in the structure section and size of a small hospital. Conclusion: In most of the hospitals studied, management of medicinal gases did not show the desired performance, which indicates the need to comply with current healthcare legislations and improve the provided services. It is believed that compliance rates may evolve training of healthcare team members, with an emphasis on the pharmacist.
- Published
- 2021
- Full Text
- View/download PDF
8. Life cycle assessment of medical oxygen.
- Author
-
Tariq, Maliha, Siddhantakar, Ankesh, Sherman, Jodi D., Cimprich, Alexander, and Young, Steven B.
- Subjects
- *
PRODUCT life cycle assessment , *CONTAINERIZATION , *ENVIRONMENTAL impact analysis , *HOSPITAL ships , *OXYGEN - Abstract
We use life cycle assessment to model the environmental impacts of medical oxygen supply to hospitals. Although medical oxygen accounts for only 1% of global liquid oxygen production, it serves life-saving purposes in the healthcare sector, which is increasingly grappling with its environmental burdens. Considering six indicators in the TRACI impact assessment method, we estimate the total environmental impacts of bulk liquid oxygen – by far the dominant supply pathway in North America – as follows: global warming potential of 0.49 kg CO 2 eq., fossil fuel depletion of 0.90 MJ surplus, carcinogenic toxicity of 6.2 × 10−8 CTUh, non-carcinogenic toxicity of 2.1 × 10−7 CTUh, respiratory effects of 2.8 × 10−4 PM 2.5 eq., and ecotoxicity of 15 CTUe, per oxygen bed day, assuming a flow rate of 2 L/min. These impacts are primarily driven by electricity used to produce liquid oxygen via cryogenic distillation. Alternatively, liquid oxygen can be converted to gaseous form and shipped to hospitals in cylinder format – with substantially increased environmental impacts from the additional container and transportation. Medical oxygen can also be produced in gaseous form via pressure swing adsorption technology, either in an on-site plant or in a portable oxygen concentrator at the patient bedside. These alternatives may modestly reduce environmental impacts compared to liquid oxygen production, though the lower purity oxygen produced is less prevalent in clinical practice. We highlight several key variables affecting the environmental impacts of each medical oxygen supply pathway, including the location of production facilities (and corresponding electricity grids), losses in the supply-chain, and clinical practice (such as the choice of oxygen purity and flow rate). Limitations of our study include a lack of primary empirical data collection and a cradle-to-gate scope that omits other aspects of oxygen therapy such as hospital energy and water use (allocated to the procedure), wastes generated, and the production of medical equipment and consumables used. Ultimately, the results of our study suggest that medical oxygen production accounts for less than 1% of the total carbon footprint of healthcare in Canada. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
9. Medical Gas Systems Maintainability Risks in Healthcare Facilities: A Design Optimization Approach
- Author
-
Almohsen, Hassan Alassafi, Khalid S. Al-Gahtani, and Abdulmohsen S.
- Subjects
medical gases ,design defects ,maintainability risks ,maintenance ,facility management ,healthcare facilities - Abstract
Medical gas pipeline systems (MGPSs) are crucial for operating healthcare facilities as life-saving systems. The sustainability of MGPSs mandates optimum performance by reducing maintenance and repairs. Since faulty design is inventible, healthcare facilities endure several design-caused maintenance issues that endanger the sustainability of healthcare services and maintenance life cycle costs. These design decisions could have been avoided if proper consideration for maintenance had been applied. Eleven experts participated in semi-structured interviews guided by Staticized Group Techniques to identify and evaluate the maintenance issues. The results included identifying 52 design-related maintenance issues that pose maintainability risks. The findings primarily fall under emergency gas supply availability, future expansion readiness, and accessibility of maintenance. The most critical issue found is the excessive cutting-outs of the pipelines when upgrading the system. For new healthcare facilities, the results of this research provide practical help for designers to avoid MGPS issues. A scarcity of benchmark research and geographical factors are some limitations to this study.
- Published
- 2023
- Full Text
- View/download PDF
10. Anesthesia Machine
- Author
-
Singh, Preet Mohinder, Shah, Dipal, Sinha, Ashish, Sikka, Paul K., editor, Beaman, Shawn T., editor, and Street, James A., editor
- Published
- 2015
- Full Text
- View/download PDF
11. Could Ergonomics of Portable Oxygen Cylinders Prevent Wastage? Comparison of Two Delivery Devices
- Author
-
Bodier-Montagutelli Elsa, Maréchal Antonin, Porcher Richard, Remérand Francis, and Respaud Renaud
- Subjects
oxygen ,medical gases ,optimisation ,Therapeutics. Pharmacology ,RM1-950 ,Pharmaceutical industry ,HD9665-9675 - Abstract
Objectives: Ambulatory oxygen therapy is sometimes needed when transferring inpatients. The prescribed administration rate must be maintained during the entire transit time. This implies that paramedical staff calculates the volume of gas remaining in the cylinder, based on the residual pressure displayed on the oxygen cylinders. This step carries a risk of errors and wastage. The objective of this study was to assess the impact of a digital autonomy display system on the use of oxygen cylinders at the hospital.
- Published
- 2016
- Full Text
- View/download PDF
12. Verificación de las condiciones de calidad del área de almacenamiento de la Central de Oxígeno en el E.S.E. Hospital San Jerónimo de Montería
- Author
-
Navarro Molina, Samuel David, Ogaza Triviño, Oscar Omar, Ortiz Mora, Maryoris, Pacheco León, Karina Yuleidis, Paternina Pineda, Jorge Armando, Petro Montaño, José Joaquín, Fuentes Fabra, Ernesto, and Arrazola Díaz, Justiniano José
- Subjects
BPM ,GMP ,Gases medicinales ,Central de oxígeno ,Quality ,Medical gases ,Calidad ,Oxygen center - Abstract
Las condiciones de calidad del almacenamiento de los gases medicinales en Colombia deben cumplir una serie de requisitos y lineamientos establecidos por normas como son la Res. 4410/09(Manual de Buenas Prácticas de Manufactura de los Gases Medicinales). y Res. 2011012580 de 2011 (Guía de verificación de las BPM gases medicinales), para su correcto funcionamiento minimizando y previniendo riesgos asociados a la seguridad, de los pacientes y personal encargados de la manipulación de estos. El presente trabajo tuvo como objetivo la verificación de las condiciones de calidad del almacenamiento de la central de oxígeno de Hospital San Jerónimo de Montería, esta fue una investigación cuantitativa con un enfoque de tipo evaluativo donde se busca verificar las condiciones de calidad del área de almacenamiento. Implementando como instrumento de medición la lista de chequeo que se encuentra como anexo de la resolución 2011012580 de 2011 (Guía de verificación de las BPM de gases medicinales). Como hallazgos de esta investigación se encontraron falencias de tipo crítico y mayor como lo establece la norma, por esta razón se realizaron una serie de recomendaciones, ceñidas a la normatividad Colombina descrita anteriormente, esto con el fin de que tenga un correcto funcionamiento. RESUMEN ............................................................................................................ 12 1. INTRODUCCIÓN............................................................................................ 13 2. MARCO DE REFERENCIA ............................................................................ 15 2.1 MARCO LEGAL ........................................................................................... 15 2.2 MARCO DE ANTECEDENTES.................................................................... 22 2.3 MARCO CONCEPTUAL .............................................................................. 24 2.4 MARCO TEORICO ...................................................................................... 27 2.4.1GAS MEDICINAL.................................................................................... 27 2.4.2 OXIGENO.............................................................................................. 27 2.4.3 SISTEMA DE SUMINISTRO.................................................................. 30 2.4.4 SISTEMA DE DISTRIBUCIÓN............................................................... 31 3. OBJETIVOS.................................................................................................... 32 3.1 OBJETIVO GENERAL ................................................................................. 32 3.2 OBJETIVOS ESPECÍFICOS........................................................................ 32 4. DISEÑO METODOLÓGICO ........................................................................... 33 4.1 ENFOQUE Y TIPO DE INVESTIGACIÓN.................................................... 33 4.2 ESCENARIO DE ESTUDIO ......................................................................... 33 4.3 UNIDAD DE ANALISIS ................................................................................ 33 4.4 PRINCIPIOS DE INCLUSION Y EXCLUSIÓN............................................. 33 4.5 POBLACIÓN, TIPO DE MUESTREO Y CÁLCULO DEL TAMAÑO DE LA MUESTRA.......................................................................................................... 34 4.6 MÉTODOS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS.............. 34 4.7 ANÁLISIS DE DATOS.................................................................................. 34 5. RESULTADOS Y DISCUSIÓN ....................................................................... 35 5.1 RESULTADOS ............................................................................................ 35 5.2 DISCUSIÓN................................................................................................. 36 6 CONCLUSIONES ........................................................................................... 38 7 RECOMENDACIONES................................................................................... 39 8 BIBLIOGRAFÍA............................................................................................... 40 9 ANEXOS......................................................................................................... 42 9.1 Anexo A. Plano 1 ......................................................................................... 42 9.2 Anexo B. Plano 2 ......................................................................................... 43 9.3 Anexo C. Guía de inspección de Buenas Prácticas de Manufactura ........... 44 Pregrado Tecnólogo(a) en Regencia de Farmacia Pasantías
- Published
- 2023
13. Medical gases.
- Author
-
Malein, William and Beecroft, Christina
- Abstract
Abstract Understanding the complex process of production, storage and delivery of medical gases is vitally important to ensure safe and efficient practice by anaesthetists. This article discusses the medical gases commonly used in anaesthesia and intensive care, and details the journey of the commonly used medical gases from production to patient delivery. It includes core knowledge for the FRCA. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
14. Propuesta para la presentación de validaciones de producción en BPM’s en gases medicinales para una IPS
- Author
-
Núñez Cortez, Mario Andrés, Castiblanco, July, Castiblanco Aldana, July Patricia, and Universidad ECCI
- Subjects
Gases medicinales ,Prácticas de manufactura ,Curación de las enfermedades ,Manufacturing practices ,Medical gases - Abstract
Este trabajo trazo la linea base para la certificación en el marco de las buenas practicas de manufactura para gases medicinales en una institución prestadores de salud de cuarto nivel, estableciendo un punto de partida para ajustar los requerimientos de las normas aplicables en la fabricación de aire medicinal catalogado como medicamento. Agradecimientos 3 Dedicatoria 4 Resumen 5 Abstract 6 Introducción 7 Listado de tablas 12 Listado de figuras 13 1 Propuesta para la presentación de validaciones de producción en BPM’s en gases medicinales para una IPS. 14 2 Problema de investigación 14 2.1 Descripción del problema 14 2.2 Planteamiento del problema 15 Como orientar el cumplimiento de las buenas prácticas de manufactura de gases medicinales en una institución de salud para certificación del INVIMA. 15 2.3 Sistematización del problema 15 3 Objetivos de la Investigación 16 3.1 Objetivo general 16 Orientar las necesidades de las BPM’s en el proceso productivo de gases medicinales en una IPS. 16 3.2 Objetivos específicos 16 4 Justificación y delimitación 16 4.1 Justificación 17 4.2 Delimitación 18 4.3 Limitaciones 18 5 Marco conceptual 20 5.1 Estado del arte 20 5.1.1 Ámbito nacional 20 5.1.2 Ámbito Internacional 23 5.2 Marco Teórico 26 5.2.1 ¿Que es una USP? 26 5.3 Descripción General Proceso de Producción de Aire Medicinal en sitio por Compresión 27 5.4 Componentes del sistema 28 5.4.1 Toma de Aire 28 5.4.2 Sistema de compresión 29 5.4.3 Tanque Ecualizador o pulmón 31 5.4.4 Válvulas tanque pulmón32 5.4.5 Modo de alarma32 5.4.6 Operación manual / Test de alarma 32 5.5 Sistema de Secado 32 5.6 Sistema de Filtración36 5.7 Filtro Coalescente 37 5.8 Filtros De partículas37 5.9 Filtros de Carbón Activado 37 5.10 Filtros Microbiológicos38 5.11 Analizador de Impurezas - Punto de Rocío (DP) 39 5.12 Analizador de impurezas – Monóxido de Carbono (CO) 40 5.13 Sistema de control integrado TotalAlert Embedded41 5.14 Alarmas45 5.15 Electroválvula45 5.16 Red de suministro 46 6 Marco normativo/legal 46 7 Marco metodológico 48 7.1 Recolección de la información 48 7.1.1 Tipo de investigación 49 7.1.2 Fuentes de obtención de la información 50 7.1.3 Herramientas 52 7.1.4 Metodología 52 7.1.5 Descripción de los estándares del proceso productivo 53 7.1.6 Estructura organizacional- Personal principal 54 7.1.7 Instalaciones59 7.1.8 Equipos 60 7.1.9 Saneamiento e Higiene 60 7.1.10 Producción 61 7.1.11 Validaciones 62 7.1.12 Autoinspecciones y auditorias de calidad 63 7.1.13 Divulgación – Capacitación 64 7.1.14 Información recopilada 64 7.1.15 Instalaciones. 66 7.1.16 Red de suministro 66 7.1.17 Mantenimiento 67 7.1.18 Calificación, validación y calibración 67 7.1.19 Validación de procesos. 69 7.1.20 Auditorias y autoinspecciones 69 7.2 Análisis de la información 71 7.2.1 Estándar de garantía de calidad. Capitulo II resolución 4410 de 2009 73 7.2.2 Hallazgo. 74 7.3 Control de calidad. Capitulo III resolución 4410 de 2009. 75 7.3.1 Hallazgo 75 7.4 Validaciones. Capitulo V resolución 4410 de 2009. 75 7.4.1 Hallazgo 76 7.5 Personal. Capitulo X resolución 4410 de 2009. 76 7.5.1 Hallazgos 77 7.6 Instalación. Capitulo XI resolución 4410 de 2009. 77 7.6.1 Hallazgo 78 7.7 Equipos e instrumentos. Capitulo XI resolución 4410 de 2009. 78 7.7.1 Hallazgos 79 7.8 Producción. Capitulo VIII resolución 4410 de 2009. 80 7.9 Documentación. Capitulo XVII resolución 4410 de 2009 80 7.9.1 Hallazgos 81 7.10 Propuesta(s) de solución 81 8 Impactos esperados/generados 84 8.1 Manuales 84 8.2 Protocolos 85 8.3 Instructivos 86 8.4 Planes 87 8.5 Planos, formato y anexos 88 9 Análisis financiero 90 9.1 Análisis costo beneficio 90 9.1.1 Retorno a la inversión 92 9.1.2 Multas y sanciones 92 10 Conclusiones y recomendaciones 94 10.1 Conclusiones 94 10.2 Recomendaciones 95 11 Bibliografía 96 1th ed Especialización Especialista en Gerencia de Ingeniero Hospitalaria Especialización en Gerencia de Ingeniería Hospitalaria
- Published
- 2022
15. Medical gases for stroke therapy: summary of progress 2015-2016.
- Author
-
Jun-long Huang, Bao-lian Zhao, Manaenko, Anatol, Fan Liu, Xue-jun Sun, and Qin Hu
- Subjects
- *
STROKE treatment , *OXYGEN therapy , *RESPIRATORY therapy - Abstract
Stroke is a cerebrovascular disease with high mortality and morbidity. Despite extensive research, there are only a very limited number of therapeutic approaches suitable for treatment of stroke patients as yet. Mounting evidence has demonstrated that such gases as oxygen, hydrogen and hydrogen sulfide are able to provide neuroprotection after stroke. In this paper, we will focus on the recent two years' progress in the development of gas therapies of stroke and in understanding the molecular mechanisms underlying protection induced by medical gases. We will also discuss the advantages and challenges of these approaches and provide information for future study. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
16. The anaesthesia gas supply system
- Author
-
Sabyasachi Das, Subhrajyoti Chattopadhyay, and Payel Bose
- Subjects
Cylinders ,manifolds ,medical gases ,pipelines ,vacuum-insulated evaporators ,Anesthesiology ,RD78.3-87.3 - Abstract
The anaesthesia gas supply system is designed to provide a safe, cost-effective and convenient system for the delivery of medical gases at the point of-use. The doctrine of the anaesthesia gas supply system is based on four essential principles: Identity, continuity, adequacy and quality. Knowledge about gas supply system is an integral component of safe anaesthetic practice. Mishaps involving the malfunction or misuse of medical gas supply to operating theatres have cost many lives. The medical gases used in anaesthesia and intensive care are oxygen, nitrous oxide, medical air, entonox, carbon dioxide and heliox. Oxygen is one of the most widely used gases for life-support and respiratory therapy besides anaesthetic procedures. In this article, an effort is made to describe the production, storage and delivery of anaesthetic gases. The design of anaesthesia equipment must take into account the local conditions such as climate, demand and power supply. The operational policy of the gas supply system should have a backup plan to cater to the emergency need of the hospital, in the event of the loss of the primary source of supply.
- Published
- 2013
- Full Text
- View/download PDF
17. Technical Equipment of a subarea of the Institute of Radiology of a focal hospital
- Author
-
Edelmayer, Clemens
- Subjects
Stromversorgung ,Anwendungsgruppe ,Untersuchungsraum ,Kommunikationstechnik ,Communication technology ,Lüftung ,Room book ,Climate ,Supply ,Detailbereich ,Focus Hospital ,Stromlaufplan ,Bachelorarbeit ,Raumbuch ,Crashplan ,Computer tomograph ,HVAC ,Architektur ,Workflow ,Ventilation unit ,Schwerpunktkrankenanstalt ,Befeuchtung ,Disposal ,Computertomograph ,Architecture ,Safety power supply ,Dimensioning ,Verteiler ,Medizinprodukte ,Sicherheitsstromversorgung ,Schaltraum ,Entsorgung ,Elektrotechnik ,Ventilator ,HKLS ,Magnetic Resonance Imaging ,Crash plan ,Installation technology ,Functional area ,Funktionsbereich ,Magnetresonanztomograph ,Beatmungsgerät ,Medical devices ,Examination room ,Medical gases ,CT ,MRI ,Power supply ,MRT ,Installationstechnik ,Patients ,Circuit diagram ,Medizinische Gase ,Additional safety power supply ,Sanitary ,Planung ,Application group ,Patienten ,Medizintechnik ,Control room ,Dimensionierung ,Building services ,Medical technology ,Versorgung ,Bachelor thesis ,Personal ,Detail area ,Haustechnik ,Staff ,Humidification ,Zusätzliche Sicherheitsstromversorgung ,Sanitär ,Ventilation ,Planning ,Klima ,Transportliege ,Lüftungsgerät ,Distributor ,Stretcher ,Electrical engineering - Abstract
Die Arbeit behandelt die Planung und Konzeptionierung eines Teilbereichs des Instituts für Radiologie in eine Schwerpunktkrankenanstalt mit einem MRT und zwei CT. Der Verfasser betreibt eigenständig die Behandlung einer Problemstellung des Studiums mit Praxisbezug, und methodisch korrekte Auseinandersetzung mit wissenschaftlichen Erkenntnissen in einem vorgegebenen Zeitraum. Die durch das Studium erworbenen Kenntnisse und Fähigkeiten sind anzuwenden, um das Fundament für das Technische Projekt zu bilden. Folgende Lehrinhalte werden insbesondere berücksichtigt: • Räumliche Planung • Planung des Workflows • Planung der Medizintechnik • Planung der Installationstechnik (Elektro- und Kommunikationstechnik) • Planung der HKLS-Technik Unter Berücksichtigung dieser Aspekte wird die Abteilung der Schwerpunktanstalt in der relevanten Dimension geplant. The thesis deals with the planning and conceptual design of a subarea of the Institute of Radiology into a focus hospital with one MRI and two CT. The author independently carries out the treatment of a problem of the study with practical relevance, and methodically correct examination of scientific findings in a specified period. The knowledge and skills acquired through the study are to be applied to form the foundation for the technical project. The following teaching contents are considered in particular: - Spatial planning - Workflow planning - Planning of medical technology - Planning of installation technology (electrical and communication technology) - Planning of the HVAC technology Taking these aspects into account, the department of the focal institution is planned in the relevant dimension.
- Published
- 2022
18. Interaktiv digital utbildning för gasansvariga inom Region Uppsala
- Author
-
Södergran, Philip, Söderlund, David, Södergran, Philip, and Söderlund, David
- Abstract
Background: In healthcare, it is common that personnel handle medical gases. Medical gases can be hazardous if they are handled the wrong way. The healthcare personnel needs knowledge within gas handling to eliminate the risks of mix-ups, inaccurate transportation, inaccurate change of regulators and further on. Therefore, it is essential to educate healthcare personnel in how to handle medical gases in a safe manner. Region Uppsala has been responsible for educations on-site. To make the education more accessible it is desirable to make an interactive online course, with personnel responsible for medical gases as the target group. Aim: To design a digital interactive education, with personnel responsible for medical gases as the target group. Method: Revise material from earlier education plans within gas handling, designing an interactive online course using Articulate 360 storyline and evaluate the pedagogical layout and the information in the first version of the online course. Result: It was found that an interactive online course, with personnel responsible for medical gases within Region Uppsala as the target group should contain general information about gas, medical gases with associated bottles, information about gas cylinder, regulators and their handling and security and management processes. Focus during the making of the online course was to include interactive parts and to follow the principles “Meaningful”, “Engaging” and “Accessible”. The result from the evaluation made on the first version of the education generated about ten points of improvement. Two examples of changes applied to the final version of the education was a change of color from black to white on the icons at the bottom of the layout and addition of a section about emergency shut-off valves. Conclusion: An interactive online course was produced with the purpose to educate personnel responsible for medical gases within Region Uppsala. The created online course is more accessible than
- Published
- 2021
19. Medical gases, their storage and delivery.
- Author
-
Westwood, Mei-Mei and Rieley, William
- Abstract
Medical gas production, storage and delivery is a complex process. Design of such a system must ensure that gas delivery is safe, convenient and cost-effective. This article reviews the production, storage and delivery of commonly used anaesthetic gases, following the gases from production to delivery. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
20. In Vitro Evaluation of Medical Gases and Sprays Using Nasal Replicas
- Author
-
Chen, John
- Subjects
- nasal sprays, medical gases, aerosols, oxygen delivery, in vitro, regional deposition, nasal pMDI
- Abstract
Abstract: The objective of this thesis is to describe two new methodologies for evaluating medical gas and nasal spray delivery, respectively, in vitro using nasal replicas. The first half of the body of thesis describes the development of a new in vitro benchtop method for evaluating the delivery of medical gases across different modalities (e.g. delivery of pulsed vs. continuous flows). The second half describes the design and validation of an idealized nasal replica which mimics the average in vitro and in vivo regional deposition of nasal sprays in adult subjects. Chapter 1 provides the background and justification for the use of nasal replicas in in vitro evaluations of the delivery of medical gas and nasal sprays. For medical gases, previous researchers have relied on highly simplified geometries, which cannot simulate physiologically accurate pressure changes in the airways during breathing, nor account for the effect of intersubject variability in patient airway geometries on gas delivery. For sprays and aerosols, an extensive history of in vitro studies evaluating regional intranasal deposition using realistic nasal replicas already exists. These studies tend to be performed with a single geometry, which is unlikely to be representative of the population at large, highlighting the potential utility of a standardized idealized geometry which would mimic average regional in vivo and in vitro deposition across an adult population. Chapter 2 introduces the problem of equivalency between continuous flow and pulse flow delivery of supplemental oxygen and describes the development of a predictive in vitro model for inhaled oxygen delivery using a set of realistic nasal airway replicas. Experiments are reported to compare pulse flow delivery from a commercial portable oxygen concentrator (POC) with continuous flow from a compressed oxygen cylinder. A volume-averaged fraction of inspired oxygen (FiO2) was calculated by numerically integrating inhaled oxygen flow rates sampled at the exit of each replica and used as a common basis for comparison between continuous and pulse flow. Pulse flow delivered consistently lower FiO2 than continuous flow rates equivalent to nominal pulse flow settings. To the extent that the POC triggered successfully at the start of inhalation, intersubject variability in airway geometries had a minimal effect on FiO2. Testing using airway replicas was also useful in identifying cases of impaired device function or failure. Chapter 3 investigates the relative performance of four POCs both against each other and against continuous flow oxygen using a single realistic nasal replica which had a reliably high triggering pressure and which delivered a medium FiO2 compared to the full replica set. Oxygen delivery to the deep lung was also analyzed in silico by combining in vitro oxygen concentration waveforms over time and a single-path mathematical model of the lungs. Significant differences in POC performance based on FiO2 were found between continuous and pulse flow, and between pulse modes in different POCs at the same nominal device setting. In silico simulations revealed that while pulse flow is a more efficient mode of delivery than continuous flow, continuous flow ultimately delivers a greater volume of oxygen per breath. Chapter 4 describes the manufacture and in vitro validation experiments needed for the development of an idealized nasal replica, based on a geometry previously developed using in silico simulations. This replica, manufactured in plastic, was validated by comparing with regional deposition in realistic, sectioned nasal replicas obtained from in vitro deposition experiments and in previously published in vivo data. A commercial nasal spray pump was actuated repeatably into each realistic or idealized nasal replica under a steady inspiratory flow at two different orientations. It was found that regional deposition in the idealized replica agreed well with average regional deposition in the realistic replicas and with previously published in vivo gamma scintigraphy data. In Chapter 5, an aluminum version of the idealized nasal replica from Chapter 4 was used in order to facilitate further in vitro experiments with a wider set of intranasal drug formulations (one aqueous solution, one aqueous suspension and one propellant-based formulation). Good agreement was seen between deposition measured using the idealized replica and in vivo deposition patterns for all three nasal drug formulations that were tested. Chapter 6 summarizes the main conclusions of the thesis and provides possible directions for future research.
- Published
- 2022
21. Interactive online course made for personnel responsible for medical gases within Region Uppsala
- Author
-
Södergran, Philip and Söderlund, David
- Subjects
digital utbildning ,gashantering ,medicinska gaser ,Omvårdnad ,interaktiv ,Other Medical Engineering ,interactive ,online course ,gas handling ,gasansvarig ,Nursing ,Annan medicinteknik ,medical gases - Abstract
Background: In healthcare, it is common that personnel handle medical gases. Medical gases can be hazardous if they are handled the wrong way. The healthcare personnel needs knowledge within gas handling to eliminate the risks of mix-ups, inaccurate transportation, inaccurate change of regulators and further on. Therefore, it is essential to educate healthcare personnel in how to handle medical gases in a safe manner. Region Uppsala has been responsible for educations on-site. To make the education more accessible it is desirable to make an interactive online course, with personnel responsible for medical gases as the target group. Aim: To design a digital interactive education, with personnel responsible for medical gases as the target group. Method: Revise material from earlier education plans within gas handling, designing an interactive online course using Articulate 360 storyline and evaluate the pedagogical layout and the information in the first version of the online course. Result: It was found that an interactive online course, with personnel responsible for medical gases within Region Uppsala as the target group should contain general information about gas, medical gases with associated bottles, information about gas cylinder, regulators and their handling and security and management processes. Focus during the making of the online course was to include interactive parts and to follow the principles “Meaningful”, “Engaging” and “Accessible”. The result from the evaluation made on the first version of the education generated about ten points of improvement. Two examples of changes applied to the final version of the education was a change of color from black to white on the icons at the bottom of the layout and addition of a section about emergency shut-off valves. Conclusion: An interactive online course was produced with the purpose to educate personnel responsible for medical gases within Region Uppsala. The created online course is more accessible than the previous education available on-site and with some complementary practical elements, the online course can permanently replace the previous on-site education.
- Published
- 2021
22. The Anaesthesia Gas Supply System.
- Author
-
Das, Sabyasachi, Chattopadhyay, Subhrajyoti, and Bose, Payel
- Subjects
ANESTHESIA equipment ,EVAPORATORS ,DRUG monitoring ,MEDICAL equipment ,DRUG delivery devices - Abstract
The anaesthesia gas supply system is designed to provide a safe, cost-effective and convenient system for the delivery of medical gases at the point of-use. The doctrine of the anaesthesia gas supply system is based on four essential principles: Identity, continuity, adequacy and quality. Knowledge about gas supply system is an integral component of safe anaesthetic practice. Mishaps involving the malfunction or misuse of medical gas supply to operating theatres have cost many lives. The medical gases used in anaesthesia and intensive care are oxygen, nitrous oxide, medical air, entonox, carbon dioxide and heliox. Oxygen is one of the most widely used gases for life-support and respiratory therapy besides anaesthetic procedures. In this article, an effort is made to describe the production, storage and delivery of anaesthetic gases. The design of anaesthesia equipment must take into account the local conditions such as climate, demand and power supply. The operational policy of the gas supply system should have a backup plan to cater to the emergency need of the hospital, in the event of the loss of the primary source of supply. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
23. Medical gases, their storage and delivery.
- Author
-
Westwood, Mei-Mei and Rieley, William
- Subjects
MEDICAL supplies ,COAL gas ,STORAGE ,SYSTEMS design ,ANESTHETICS ,ACCIDENT prevention - Abstract
Abstract: Medical gas production, storage and delivery is a complex process. Design of such a system must ensure that gas delivery is safe, convenient and cost-effective. This article reviews the production, storage and delivery of commonly used anaesthetic gases, following the gases from production to delivery. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
24. Medical gases, their storage and delivery.
- Author
-
Highley, David
- Subjects
MEDICAL supplies ,GASES ,STORAGE ,DELIVERY of goods ,PHYSICAL distribution of goods ,GAS cylinders ,ANESTHETICS - Abstract
Abstract: Medical gas production supply and distribution is a closely regulated process with many intrinsic safety designs and procedures. Supply and storage of both bulk and cylinder based systems are reviewed together with the production of common anaesthetic gases. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
25. Medical gases, their storage and delivery.
- Author
-
Love-Jones, Sarah and Magee, Patrick
- Subjects
THERAPEUTIC use of gases ,MEDICAL care ,ANESTHESIA ,CRITICAL care medicine - Abstract
Abstract: Medical gases used in anaesthesia and intensive care include oxygen, nitrous oxide, medical air, entonox, carbon dioxide, heliox and nitric oxide. Breathable gases administered to patients are stored either in bulk outside the hospital or in cylinders within the hospital. Medical gases are then distributed throughout the hospital via a pipeline network. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
26. Normalisation européenne et systèmes de distribution de gaz médicaux
- Author
-
Guenoun, T., Journois, D., Aka, E.J., Philippe, H., Cazalaà, J.-B., and Safran, D.
- Subjects
- *
ANESTHESIA , *PRESSURE , *HOSPITALS , *DRUGS - Abstract
Abstract: Several recent decisions have been made in order to increase the security of medical gases delivery in French hospitals. These different changes affect: 1) the hospital itself with the creation of working groups in charge of both monitoring and maintenance of gases networks; 2) the pharmaceutical regulation with promotion of several gases to the status of drugs or need of CE marking for the whole gas network. European rules onset required to give up French former norms (NF) to the profit of « NF EN » rules. Nevertheless, the new norm NF EN 737-3 which concerns medical gases distribution systems does not affect principal clauses of the previous NF S 90-155. It introduces new elements allowing to deploy two types of medical gases networks: the double pressure level used in France and the single pressure level used in the rest of Europe. This new norm, which attempts to harmonize alarm control systems in both types of networks, suffers from important limitations describing the double pressure level systems. Lastly, the final checking proposed by this new norm is very different from the previous one, and is likely to be problematic for the final users within the hospital. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
27. Medical gases, their storage and delivery.
- Author
-
Lovell, Timothy
- Subjects
THERAPEUTIC use of gases ,ANESTHESIA ,CRITICAL care medicine ,GAS cylinders ,PIPELINES ,HOSPITAL supplies - Abstract
Abstract: Gases are often administered to patients during anaesthesia and in critical-care areas. If only small-scale use is required, or portability is important, gases can be stored in cylinders, for example at the back of the anaesthetic machine. Most hospitals also have a pipeline supply of gases. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
28. Medical Gases Comparison of medical care types in a medical environment using the example of an intensive care unit
- Author
-
Nikolic, Nemanja
- Subjects
medical supply unit ,Medizinische Gase ,cover supply unit ,medical supply systems ,Medienversorgungseinheit ,Deckenversorgungseinheit ,Wandmontierte Systeme ,Armsysteme ,Balkensysteme ,arm system ,Medizinische Versorgungsarten ,Medizinische Versorgungssysteme ,beam system ,wall-mounted systems ,medical gases ,media supply unit - Abstract
Eine Intensivstation gilt als einer der anspruchsvollsten Bereiche einer Krankenanstalt und ermöglicht die Behandlung von sowohl kardiologischen als auch allen anderen Erkrankungen, deren Therapie und Genesung an einer regulären Bettenstation nicht mehr ausreichend gewährleistet werden kann. Da sich auf einer derartigen Station PatientInnen befinden, welche oft schwere Eingriffe hinter sich haben, oder an einer schweren Erkrankung leiden und dadurch eine massive Immuninsuffizienz haben, werden an diese Räume besonders hohe Ansprüche in Sachen Hygiene, Verfügbarkeit und technische Infrastruktur gestellt. An intensive care unit is considered one of the most demanding areas of a hospital and allows the treatment of cardiological, as well as all other diseases, whose therapy and recovery at a regular ward can no longer be adequately ensured. Since there are patients on such a ward, who often have severe procedures behind them, or who suffer from a serious illness and thus have massive immune deficiency, these rooms are subject to particularly high demands in terms of hygiene, availability and technical infrastructure.
- Published
- 2020
29. Medical Gases Configurations and supply options in a medical environment
- Author
-
Nikolic, Nemanja
- Subjects
Medizinische Gase ,ISO 7396-1 ,Technische Gase ,Nicht lebenserhaltende Gase ,technical gases ,Druckgasbehälter ,Lebenserhaltende Gase ,life-sustaining gases ,medical gas systems ,non-life-sustaining gases ,ÖNORM EN ISO 7396-1 ,Medizinische Gasanlagen ,pressure gas tank ,medical gases - Abstract
Seit mehr als 5 Jahren ist der Autor dieser Arbeit bei einem medizintechnischen Unternehmen tätig, welches speziell im Bereich der medizinischen Gasanlagen eine beachtliche Anzahl an Krankenanstalten in Österreich betreut. Neben der elektrischen Versorgung nimmt die Versorgung mit lebenserhaltenden medizinischen Gasen eine zentrale Rolle im intramuralen Bereich ein. Sauerstoff und medizinische Druckluft in medizinischen Anwendung müssen stets in ausreichender Menge zur benötigten Zeit am richtigen Ort zur Verfügung stehen. Im Laufe von Jahrzehnten entwickelten sich vielfältige Normen und Regularien, um den geforderten medizinischen Bedürfnissen gerecht zu werden und um die Versorgung bewerkstelligen zu können. For over 5 years the author of this thesis has been working for a company, which is specialized in the field of medical gases and maintains a huge number of hospitals in Austria. Besides the electrical supply, the provision of life-sustaining medical gases, plays an important role in the intramural field. Oxygen and medicinal air for medical purposes must always be available to any patient at any time. There has been an extraordinal amount of new and improved relevant standards over the last four decades aiming to satisfy all upcoming medical needs and make sure that medical supply is always sufficiently provided.
- Published
- 2020
30. Manual de procedimientos para agentes de aduana que realizan desaduanización de gases medicinales aplicando el régimen de admisión temporal para perfeccionamiento activo (régimen 21)
- Author
-
Clavijo Jéssica, Aroca, Lozano Arias, Yomira Katherine, Pozo Rivadeneira, María Stefanie, Clavijo Jéssica, Aroca, Lozano Arias, Yomira Katherine, and Pozo Rivadeneira, María Stefanie
- Abstract
This academic article reflects the situations that arise in customs operations in Ecuador as established in the COPCI and the provisions of the SENAE (National Customs Service of Ecuador), where in some cases there have been inconsistencies in the procedures of customs clearance by companies that provide professional customs services. Details are given regarding the design of a Manual of procedures for customs agents applied in the customs clearance of medicinal gases applied to the Temporary Admission Regime for the Active Improvement (Regime 21), which included a sample of three professional service companies of agent of customs where the purpose was to identify the factors that generate an insufficient knowledge about the processes and requirements that must be met in the importation of this type of products applying the regime subject to study. For the fulfillment of objectives, the proposed methodology was non-experimental, according to a descriptive process and a qualitative approach where the research criteria are based on the development of interviews and the observation technique that allowed obtaining the information required to demonstrate the viability of a proposal. improvement., El presente artículo académico refleja las situaciones que se presentan en la operatividad aduanera en Ecuador conforme a lo establecido en el COPCI y las disposiciones de la SENAE (Servicio Nacional de Aduana del Ecuador), donde en algunos casos se han dado inconsistencias en los procedimientos de desaduanización por parte de empresas que prestan servicios profesionales aduaneros. Se detalla lo referente al diseño de un Manual de procedimientos para agentes de aduana aplicado en la desaduanización de gases medicinales aplicados al Régimen de Admisión Temporal para el Perfeccionamiento Activo (Régimen 21), que abarcó una muestra de tres empresas de servicio profesional de agente de aduana donde el fin fue identificar los factores que generan un insuficiente conocimiento sobre los procesos y requisitos que deben cumplirse en la importación de este tipo de productos aplicando el régimen sujeto a estudio. Para el cumplimiento de objetivos la metodología planteada fue no experimental, conforme a un proceso descriptivo y enfoque cualitativo donde los criterios investigativos están basados en el desarrollo de entrevistas y la técnica de observación que permitió obtener la información requerida para demostrar la viabilidad de una propuesta de mejora.
- Published
- 2019
31. Analytical Determination of Medical Gases Consumption and Their Impact on Hospital Sustainability
- Author
-
Luis Armenta Márquez, Miguel Gómez Chaparro, and Justo García Sanz-Calcedo
- Subjects
hospital sustainability ,Hospital bed ,Geography, Planning and Development ,TJ807-830 ,Management, Monitoring, Policy and Law ,TD194-195 ,Renewable energy sources ,03 medical and health sciences ,0302 clinical medicine ,Nitrogen Protoxide ,030202 anesthesiology ,Environmental health ,Health care ,GE1-350 ,Environmental impact assessment ,030212 general & internal medicine ,Consumption (economics) ,Environmental effects of industries and plants ,Renewable Energy, Sustainability and the Environment ,business.industry ,gas facilities ,healthcare engineering ,Environmental sciences ,Work (electrical) ,healthcare facilities ,Sustainability ,Environmental science ,business ,medical gases ,Maintenance management - Abstract
Medical gases are known to show a great environmental impact and also to consume relevant resources in terms of hospital management. The present work reports on a study performed between 2008 and 2016 in a target set of 12 Spanish hospitals with floor area and number of beds ranging 2314–23,300 m2 and 20–194, respectively, for which the average annual consumption rates of oxygen, nitrogen, medicinal air, carbon dioxide and nitrogen protoxide were analysed. The annual consumption of medical gases in a hospital was proved to be correlated with the number of hospital discharges, the number of surgeries, the number of emergency interventions, the number of hospitalisations, the number of hospital beds, the useful floor area of the building and the number of workers. In particular, the annual consumption per hospital bed was computed as 350 m3 for oxygen, 325 m3 for medicinal air, 9 m3 for nitrogen protoxide and 3 m3 for carbon dioxide. It is shown that healthcare activity appears as an adequate variable to quantify and to monitor medical gases consumption in hospitals, to assess the size of their facilities as well as to optimise maintenance management.
- Published
- 2018
- Full Text
- View/download PDF
32. Homeostatic and endocrine responses as the basis for systemic therapy with medical gases: ozone, xenon and molecular hydrogen.
- Author
-
Nazarov EI, Khlusov IA, and Noda M
- Subjects
- Endocrine System, Hydrogen, Pituitary Gland, Ozone, Xenon
- Abstract
Among medical gases, including gases used therapeutically, this review discusses the comparative physiological activity of three gases - ozone (O
3 ), xenon (Xe) and molecular hydrogen (H2 ), which together form representatives of three types of substances - typical oxidizing, inert, and typical reducing agents. Upon analysis of published and proprietary data, we concluded that these three medical gases can manipulate the neuroendocrine system, by modulating the production or release of hormones via the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-gonadal axes, or the gastrointestinal pathway. With repeated administration of the gases over time, these modulations become a predictable consequence of conditioned homeostatic reflexes, resulting in regulation of physiological activity. For example, the regular activation of the unconditioned defense reflex in response to repeated intoxication by ozone leads to the formation of an anticipatory stable conditioned response, which counteracts the toxic action of O3 . The concept of a Pavlovian conditioned reflex (or hormoligosis) is a brief metaphor for the understanding the therapeutic effect of systemic ozone therapy., Competing Interests: None- Published
- 2021
- Full Text
- View/download PDF
33. Posebnosti proizvodnje i registracije medicinskih plinova
- Author
-
Šikić, Luka and Pepić, Ivan
- Subjects
medicinski plinovi ,BIOMEDICINA I ZDRAVSTVO. Farmacija. Farmacija ,medical gases ,BIOMEDICINE AND HEALTHCARE. Pharmacy. Pharmacy ,postrojenje za razlaganje zraka, dobra proizvođačka praksa, zajednički tehnički dokument - Abstract
Cilj istraživanja Premda medicinski plinovi čine mali udio u ukupnom zdravstvu Republike Hrvatske, njihova upotreba je neophodna, a važnost neprocjenjiva. Kao i svaka druga farmaceutska industrija, tako i proizvođač medicinskih plinova posjeduje farmaceutski sustav kakvoće koji je temeljen na propisima kojima su strogo definirani postupci od proizvodnje pa sve do isporuke prema zdravstvenim ustanovama. Cilj ovog rada je opisati glavne indikacije najčešće korištenih medicinskih plinova, način njihove proizvodnje te pakiranja. Također, cilj rada je i istaknuti osnovne zahtjeve dobre proizvođačke prakse koje proizvođač mora zadovoljiti s ciljem dobivanja proizvodne dozvole te osnovne prinicipe registracije lijekova i medicinskih proizvoda. Materijali i metode Literatura je pretraživana prema temi i predmetu istraživanja. Ciljana pretraga provedena je na bazama PubMed, Google pretraživaču, na stranicama Agencije za lijekove i medicinske proizvode, putem znanstvenih članaka te dostupnim dokumentima proizvođača. U ovom se radu raspravlja o posebnostima proizvodnje i registracije medicinskih plinova te se metodama deskriptivne analize i kompilacije opisuju specifičnosti vezane uz medicinske plinove. Rezultati Iznesene su osnovne indikacije upotrebe medicinskih plinova te je ukratko opisana upotreba takvih plinova izvan zdravstvenog sustava. U osnovnim crtama objašnjeni su postupci proizvodnje tekućih plinova. Opisana je klasifikacija medicinskih plinova sukladno Direktivi 2001/83 te Direktivi za medicinske proizvode (MEDDEV), a približena je i razlika između Kroz poglavlja: osoblje, prostori i oprema, dokumentacija, proizvodnja, kontrola kakvoće i transport prikazani su zahtjevi dobre proizvođačke prakse koje je proizvođač dužan zadovoljiti s ciljem pribavljanja proizvodne dozvole, ali i osiguranja da je gotov proizvod siguran i kvalitetan za kliničku primjenu. Kao važan segment vezan uz fizička svojstva plinova opisani su i zahtjevi za sigurnosno rukovanje. Također rad daje pregled osnovnih postupaka registracije lijekova i medicinskih proizvoda s ciljem dobivanja odobrenja za stavljanje u promet. Zaključak Medicinski plinovi su plinovi korišteni u zdravstvenom sustavu te kao takvi predstavljaju mali udio u ukupnom zdravstvu. Radi se o vrlo jednostavnim i dugo poznatim molekulama proizvedenim u postrojenjima koja na istom principu rade dulje od 100 godina. Premda su dugo vremena isporučivani u bolnice kao proizvodi bez posebnog statusa, razvojem farmaceutske regulative bivaju prepoznati te u konačnici i registrirani kao lijekovi i medicinski proizvodi. Upravo zbog statusa kojeg su dobili, plinska industrija je dobila status proizvođača lijeka i medicinskih proizvoda. Kroz godine rada nekada samo proizvođači tehničkih plinova, a danas proizvođači lijekova i medicinskih proizvoda ustrojili su snažne farmaceutske sustave kvalitete kojima reguliraju proizvodnju, provjeru kakvoće, puštanje u promet te u konačnici i distribuciju prema zdravstvenim ustanovama. Objectives Although medical gases make a small share in the total healthcare in Republic of Croatia, their use is necessary and the importance is essential. Like any other pharmaceutical manufacturer, manufacturer of medical gases has an organized pharmaceutical quality system based on laws and regulations by which all processes from production to distribution to healthcare institutions are strictly defined. The aim of this paper is to describe the main indications of the most commonly used medical gases, how they are produced and packaged. Also, the aim of the paper is to highlight the basic requirements of good manufacturing practice that the manufacturer is required to meet with the aim of obtaining a manufacturing licence and the basic principles of the registration of medicines and medical devices. Materials and methods Targeted literature search was done on PubMed, Google search engine, website of Croatian Agency of Medicinal Products and Medical Devices, articles in the research journals and available documents of manufacturers. This paper discusses the specificities of the production and registration of medical gases and by methods of descriptive analyzes and compilations specificities associated with medical gases are described. Results Basic indications of the use of medical gases have been described and the use of these same gases outside the health system is also briefly described. In the basic lines, the processes of production of liquid gases are explained. The classification of medical gases according to the Directive 2001/83 and the Medical Devices Directive (MEDDEV) is also described, and the difference between the medicine and the medical device is approximated. Through the chapters: staff, premises and equipment, documentation, production, quality control and distribution, the requirements of good manufacturing practice that the manufacturer is required to meet with the aim of obtaining a production license are also presented, as well as ensuring that the finished product is safe and of high quality for use on patients. As an important segment related to the physical properties of gases, safety management requirements are also described. This paper also provides an overview of the basic procedures for registering medicines and medical devices with a view to obtaining a marketing authorization. Conclusion Medical gases are gases used in the health system and as such the represent a small share in overall health care. These are very simple and long-known molecules produced in plants that work on the same principle for more than 100 years. Although they have been delivered to hospitals for a long time as products without special status, the development of pharmaceutical regulation they are beeing recognized and ultimately registered as medicines and medical devices. Because of the status the received, the gas industry has gained the status of medicine and medical device producers. Throughout the years, only manufacturers of medicine and medical devices have established strong pharmaceutical quality systems by which they regulate production, quality control, release on the market and ultimately, distribution to health facilities.
- Published
- 2017
34. PACKAGING RECORDING AND WAREHOUSING AT COMPANY LINDE PLIN D.O.O
- Author
-
Potočnik, Tadeja and Logožar, Klavdij
- Subjects
Skladišče ,evidentiranje ,recording ,funkcije skladiščenja ,packaging ,vrste skladišč ,medical gases ,medicinski plini ,types of storage ,storage documentation ,storage location ,udc:658.7 ,lokacija skladišč ,functions of storage ,embalaža ,Warehousing ,skladiščna dokumentacija - Abstract
V diplomski nalogi smo raziskovali skladiščno poslovanje. V teoretičnem delu smo se osredotočili na skladiščenje, osnovne funkcije in cilje skladiščenja, delitev skladišč, pomembnost lokacije skladišča, embalažo ter skladiščno dokumentacijo in evidenco. Nadaljevali smo s predstavitvijo izbranega podjetja Linde plin d.o.o. Diplomska naloga se nadaljuje z opisovanjem skladiščenja medicinskih plinov v izbranem podjetju, označevanjem in vzdrževanjem jeklenk, evidentiranjem embalaže ter procesom sledljivosti jeklenk. Prav tako smo predstavili minimalne zahteve skladiščenja in označevanje. Opisali smo problem v procesu sledljivosti jeklenk in na koncu diplomskega dela navedli tudi rešitev za odpravo le tega. In the theoretical part we focused on warehouse, basic functions and objectives of the storage division warehouse, the importane od the storage location, packaging and warehouse documentation and records. We continued with the presentation of the selected company Ling plin d.o.o. The degree paper continues by describing the storage of medical gases in the selected company, marking and maintenance of cylinders, recording of packaging and process traceability cylinders. We also introduced the minimum requirements of warehousing and labeling. We describe the problem in the process of traceability of cylinders and at the end of the degree paper provided a solution for the elimination of the problem.
- Published
- 2016
35. MARKETING COMMUNICATION OF MEDICAL GASES AND MEDICAL EQUIPMENT FOR COMPANY MESSER SLOVENIA D.O.O
- Author
-
Vodušek, Saška and Završnik, Bruno
- Subjects
instruments of marketing communication ,medicinski plini ,medicinska oprema ,distribucija ,public relations and publicity ,sales promotion ,pospeševanje prodaje ,warranty ,osebna prodaja ,brand ,distribution ,udc:659.3 ,advertising ,cena ,medical equipment ,personal selling ,instrumenti marketinškega komuniciranja ,posebne oblike marketinškega komuniciranja ,kakovost ,priporočila ,specific forms of marketing communication ,blagovna znamka ,price ,garancija ,quality ,recommendations ,medical gases ,oglaševanje ,odnosi z javnostmi in publiciteta - Abstract
V magistrskem delu smo predstavili družbo Messer Slovenija, d. o. o., ki je del mednarodno priznane korporacije Messer Group GmbH in Nemčije, ki posluje na različnih svetovnih trgih. Podjetje Messer Slovenija oskrbuje preko 3.000 kupcev in v Sloveniji pokriva 40 odstotkov potreb slovenskega tržišča za področje tehničnih in specialnih plinov. V magistrskem delu smo se osredotočili na področje medicinskih plinov in medicinske opreme, iz tega izhajajo tudi ključne ugotovitve. Pri preverjanju prve raziskovalne hipoteze smo se osredotočili na instrumente marketinškega komuniciranja, ki se jih poslužuje podjetje Messer Slovenija, ti so: oglaševanje, pospeševanje prodaje, osebna prodaja, odnosi z javnostmi in publiciteta, priporočila in posebne oblike marketinškega komuniciranja. Tako smo skozi prikaz vseh uporabljenih instrumentov za področje medicinskih plinov in medicinske opreme prikazali način marketinškega komuniciranja. Ugotovili smo, da je za podjetje najpomembnejše, da se pri marketinškem komuniciranju osredotoči na udeležence oz. ciljno skupino, ki jih zanima izdelek in storitev, ki ga podjetje ponuja, saj lahko tako usmeri vso delovanje le na njih. V ta namen je bilo za podjetje Messer Slovenija potrebno opredeliti ciljne skupine za medicinske pline in medicinsko opremo. Ugotovili smo, da podjetje Messer Slovenija uspešno izkorišča vsakega od navedenih instrumentov marketinškega komuniciranja, pri čemer daje velik poudarek osebni prodaji. Osebna prodaja velja za podjetje Messer Slovenija za najpomembnejši komunikacijski instrument, kar je predpostavka druge raziskovalne hipoteze. Razlika, ki jo predstavlja osebna prodaja glede na druge instrumente marketinškega komuniciranja, je dvostranska in osebna komunikacija. Na tak način komuniciranja se gradi dolgoročno sodelovanje s strankami in ponudba se prilagodi povpraševanju stranke. Prodajno osebje se lahko z vsako stranko posebej dogovarja o nakupnih pogojih in le tako pridejo do ustrezne rešitve, ki je sprejemljiva za obe strani. Podjetje Messer Slovenija posveča velik pomen izobraževanju prodajnega osebja. To se vsakoletno izobražuje z različnih področij, kot so: vloga prodajalca, različne tehnike prodaje, uspešna komunikacija s strankami, uspešna predstavitev ponudbe, uspešno reševanje ugovorov, ocena konkurence in drugo. Za področje medicinskih plinov in medicinske opreme se prodajno osebje srečuje z medicinskim osebjem, kot so medicinske sestre in zdravniki. Za usmerjanje prodajnega osebja je dobro poznati priporočila, ki zagotavljajo prodajnemu osebju lažjo pot do uspešne prodaje. Kot primer nekaterih napotkov za boljše sodelovanje z zdravniki lahko navedemo naslednje: zdravniki ne potrebujejo poglobljenega informiranja o izdelkih, ampak usmerjeno diskusijo o bolezni oz. terapiji, v pogovoru ne želijo standardnih opisov ali definicij, temveč prilagojene informacije, ki veljajo za njihovo področje dela. Od prodajnega osebja cenijo vse relevantne vire informiranja, prednost pred številom obiskov dajejo njihovi kakovosti. Če predpostavljamo, da ima prodajno osebje določene osebnostne lastnosti, kot so zanesljivost, poštenost, inovativnost, dinamičnost lahko v povezavi z ostalimi znanji, ki jih pridobijo skozi različna izobraževanja, zelo uspešno vodijo prodajni proces. Tako se še enkrat poudarja vloga in pomen osebne prodaje, ki velja za vsa prodajna področja v podjetju Messer Slovenija za najpomembnejši instrument marketinškega komuniciranja. V magistrskem delu smo prav tako prikazali razliko med prodajnima področjema medicinskih plinov in medicinske opreme, hkrati pa smo prikazali tudi njuno povezanost in prekrivanje. Področje medicinskih plinov zajema segment uporabnikov, ki so splošne bolnišnice, psihiatrične bolnišnice, zdravstveni domovi, kirurški centri, veterinarske ambulante in ostali. Za področje prodaje medicinskih plinov se podjetje ne posveča v tako veliki meri instrumentom marketinškega komuniciranja kot za področje medicinske opreme. V našem primeru so medicin In this master's thesis we have presented the company Messer Slovenia d. o. o., which is part of the internationally recognized cooperation Messer Group GmbH from Germany, which operates in various global markets. The company Messer Slovenia supplies over 3,000 customers and covers 40% of the needs of the Slovenian market in the field of technical and specialty gases. In this master's thesis we have focused on the field of medical gases and medical equipment, and the results and key findings are presented below. When checking the first research hypothesis we focused on marketing communication instruments that Messer Slovenia uses, such as: advertising, sales promotion, personal selling, public relations and publicity, recommendations and specific forms of marketing communication. Therefore, with all of the instruments used in the field of medical gases and medical equipment we have shown the method of marketing communication. We found that the most important factor for the company is that the focus of marketing communication is on the participants or target group who are interested in the product or service that the company offers. Thereby it can focus all the operations on them. For this purpose it was necessary for Messer Slovenia to define the target groups for medical gases and medical equipment. We found that Messer Slovenia successfully uses all of the mentioned instruments of marketing communication, from which it gives great emphasis on personal sales. Personal selling is the most important communication instrument for Messer Slovenia, which is the assumption for the other hypothesis. The differentiation between personal selling and the other instruments of marketing communication is the two-way and personal communication involved. In this method of communication a long-term cooperation with the customers is built up and an offer can be tailored to the customer’s inquiry. The sales staff can agree on purchase conditions with each customer individually, and only in this way can a solution that is acceptable for both sides be found. Messer Slovenia pays attention to educating its sales team. Every year this consists of carrying out training in various fields, such as: the role of the seller, different selling techniques, effective communication with clients, successful presentation of the offer, successful solution of conflicts, appraisal of the competitors. In the field of medical gases and medical equipment the sales staff meets with medical staff such as nurses and doctors. To direct the sales staff it is good to know the recommendations, which provide the sales staff with an easy route to a successful sale. As an example of some guidance for better collaboration with doctors we indicate the following: doctors do not need in-depth information about the products, but focused discussion about the disease or therapy in conversation they do not want standard descriptions and definitions, but tailored information that is available for their field of work. From the sales staff they appreciate all relevant sources of information. For doctors the quality of information they get from a single visit is more important than the quantity of visits. If we assume that sales staffs have particular personal characteristics such as reliability, honesty, innovation and dynamics, then in connection with other knowledge, which can be acquired through education, they could run the sales process very successfully. The role and importance of personal sales is again emphasised as the most important instrument of marketing communication, which is valid for all sales areas at Messer Slovenia. In this master's thesis, as well as showing the difference between the sales areas of medical gases and medical equipment, we have also shown their connection and coverage. The field of medical gases includes the segment of end users that are made up of general hospitals, psychiatric hospitals, health centres, surgical centres, veterinary clinics and others. In the sales field of medical gases the company does not focus as str
- Published
- 2014
36. Análisis de la prescripción de oxigenoterapia continua domiciliaria tras intervención farmacéutica
- Author
-
Quintero Pichardo, E.
- Subjects
Clinical prescribing adequacy ,Gases medicinales ,Oxigenoterapia continua domiciliaria ,Adecuación prescripción clínica ,Medical gases ,Continuous home oxygen therapy - Abstract
Objetivos: Analizar la evolución en la adecuación clínica de la prescripción de Oxigenoterapia Continua Domiciliaria a la normativa vigente en el Servicio Andaluz de Salud. Metodología: Se revisaron en un estudio previo las prescripciones nuevas y de continuación de oxigenoterapia continua domiciliaria realizadas desde Enero 2008 a Diciembre 2009. Se constituyó una Comisión de Seguimiento Multidisciplinar y se volvió a analizar la adecuación de la prescripción tras dos intervenciones farmacéuticas desde Abril 2011 a Marzo 2012. Se realizó análisis estadístico, mediante programa SPSS 15,0 para Windows, siendo la variable dependiente la adecuación a la hoja correcta de primera prescripción y continuación; y como independiente, las distintas unidades prescriptoras. En los casos en que se realizó la prescripción en hoja correcta, se analizaron las variables de cumplimentación obligatoria. Resultados: Se revisaron manualmente 163 prescripciones, con un porcentaje de adecuación a la normativa del 66,30%, algo superior a los resultados del estudio previo (55,72% en 2008; 47,70% en 2009). La intervención realizada no alcanzó en mayor grado las perspectivas por falta de recursos económicos y materiales, afectando a uno de los objetivos fundamentales que eran las revisiones de pacientes. Conclusiones: La intervención farmacéutica ha conseguido que la prescripción se adecue en mayor proporción a la normativa y se realice mejor, pero no se ha podido controlar el tema de las revisiones al depender de otras especialidades médicas y unidades administrativas que solicitaban aumento de recursos tecnológicos y humanos que facilitaran el control. Objectives: Analyze developments in the clinical adequacy of prescribing continuous home oxygen therapy to current regulations in the Andalusian Health Service. Methodology: Were reviewed in a previous study requirements and continuing new domiciliary oxygen therapy conducted from January 2008 to December 2009. It constituted a Monitoring Committee Multidisciplinary and turned to analyzing the appropriateness of prescribing after two pharmaceutical interventions from April 2011 to March 2012. Statistical analysis was performed by SPSS 15.0 for Windows, the dependent variable being the correct blade adjustment to the first prescription and then, and as independent prescribing different units. In cases in which the prescribing correct sheet, variables were analyzed mandatory. Results: 163 prescriptions were checked manually with a rate of compliance with the regulations of 66.30%, slightly higher than the results of the previous study (55.72% in 2008, 47.70% in 2009). The intervention did not achieve a greater degree the outlook for lack of financial and material resources, affecting one of the fundamental objectives were patient reviews. Conclusions: Pharmaceutical intervention has ensured that the prescription conforms to the rules and perform better, but has not been able to control the issue of revisions to rely on other medical and administrative units requesting increased technological and human resources to facilitate control.
- Published
- 2013
37. Application of medical gases in the field of neurobiology
- Author
-
John H. Zhang, Nikan H. Khatibi, Aishwarya Sridharan, and Wenwu Liu
- Subjects
0303 health sciences ,business.industry ,Neuroscience (miscellaneous) ,Cerebral hemorrhages ,Review ,oxygen therapy ,3. Good health ,Medical gas supply ,Brain disease ,lcsh:RD78.3-87.3 ,03 medical and health sciences ,0302 clinical medicine ,Anesthesiology and Pain Medicine ,Gas pre-conditioning ,lcsh:Anesthesiology ,Medicine ,hydrogen therapy ,business ,Neuroscience ,030217 neurology & neurosurgery ,Medical gases ,030304 developmental biology - Abstract
Medical gases are pharmaceutical molecules which offer solutions to a wide array of medical needs. This can range from use in burn and stroke victims to hypoxia therapy in children. More specifically however, gases such as oxygen, helium, xenon, and hydrogen have recently come under increased exploration for their potential theraputic use with various brain disease states including hypoxia-ischemia, cerebral hemorrhages, and traumatic brain injuries. As a result, this article will review the various advances in medical gas research and discuss the potential therapeutic applications and mechanisms with regards to the field of neurobiology.
- Published
- 2011
38. Design, Installation and Testing of Medical Gases Installations
- Author
-
Kalogirou, Soteris A.
- Subjects
Engineering and Technology ,Materials Engineering ,Medical gases - Published
- 1998
39. Force Dental Facility Design Guidance (AFDFDG).
- Author
-
ARMSTRONG LAB BROOKS AFB TX AEROSPACE MEDICINE DIRECTORATE, Kane, James J., Blankman, Richard H., ARMSTRONG LAB BROOKS AFB TX AEROSPACE MEDICINE DIRECTORATE, Kane, James J., and Blankman, Richard H.
- Abstract
This design guidance includes total USAF Dental Clinic facility space planning, construction criteria, and medical gases specification inclusive of architectural, mechanical, and electrical design requirements. This design guidance also provides space planning for administrative areas and conference room; patient reception and records; patient waiting and toilets; dental treatment rooms; sterilization areas; professional work areas; consultation offices; prosthodontic laboratories; staff lockers and toilets; dental supply and miscellaneous storage spaces.
- Published
- 1998
40. Develop a Diode Laser Spectroscopy System for Continuous Monitoring of Certain Gases in the Expire Air and Blood with a High Degree of Accuracy.
- Author
-
PRINCETON ELECTRONIC SYSTEMS INC CRANBURY NJ, Zhang, Jiamin, PRINCETON ELECTRONIC SYSTEMS INC CRANBURY NJ, and Zhang, Jiamin
- Abstract
Development of a monitor prototype to accurately measure medical gases such as O2 and CO2 content in the expired air is the objective of this program. By using the frequency modulation spectroscopy technique, we have fabricated a diode laser based sensor prototype for measuring O2 content in different concentration gas mixtures and the expired air. The prototype provides the good detection accuracy and signal-to-noise ratio. For an application purpose of breath-by-breath oxygen content monitoring, the death volume of the gas cell in the current sensor is still big and the related sample replacement time is still relatively long. The single board lock-in amplifier has to be improved. Further modifications on the lock-in amplifier and the gas cell are underway., Original contains color plates: All DTIC/NTIS reproductions will be in black and white.
- Published
- 1995
41. The role of equipment in endoscopic complications.
- Author
-
Suchanek S, Grega T, and Zavoral M
- Subjects
- Electric Power Supplies adverse effects, Electrosurgery instrumentation, Humans, Monitoring, Physiologic instrumentation, Electrosurgery adverse effects, Endoscopy, Digestive System adverse effects, Endoscopy, Digestive System instrumentation, Gases adverse effects
- Abstract
The role of the surrounding equipment in endoscopic complications has not been published widely. However, an adequate understanding of the advantages and disadvantages of such devices might be helpful to avoid unnecessary problems during endoscopy. This is an overview of the basic principles, benefits and possible harms of electrical power units, medical gases and vital sign monitoring equipment. The aim of this review is to summarize current knowledge about the approach to the electrosurgical unit settings; periprocedural precautions, minimizing the risk of interference between endoscopic equipment and other electrical devices; the appropriate selection of instruments regarding the electrosurgical outcome and the role of carbon dioxide, argon plasma coagulation, pulse oximetry and capnography., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
42. Hodnocení finanční situace mezinárodně působícího podniku a návrhy na jeho zlepšení
- Author
-
Procházková, Kateřina, Šťastníková, Ivana, Maleček, Jakub, Procházková, Kateřina, Šťastníková, Ivana, and Maleček, Jakub
- Abstract
Diplomová práce je zaměřena na zhodnocení finanční situace vybraného mezinárodně působícího podniku a na základě analyzovaných dat navržení vhodných opatření pro zlepšení finanční situace podniku. Práce je rozdělena do tří částí. První část práce se zabývá definováním pojmů analýzy vnějšího a vnitřního prostředí podniku, finanční analýzy a mezipodnikového srovnání. Druhá část je zaměřena na aplikaci jednotlivých postupů definovaných v části teoretické, tedy analýzy vnitřního a vnějšího prostředí společnosti, finanční analýzy a mezipodnikového srovnání. Poslední část práce, která vychází z výsledků části analytické se věnuje vlastnímu návrhu řešení zlepšení finanční situace podniku., The diploma thesis is focused on the evaluation of the financial situation of a selected internationally operating company and on the basis of the analysed data to propose appropriate measures to improve the financial situation of the company. The thesis is divided into three parts. The first part of the thesis deals with defining the concepts of analysis of the external and internal environment of the enterprise, financial analysis and inter-enterprise comparison. The second part focuses on the application of the individual procedures defined in the theoretical part, i.e. analysis of the internal and external environment of the company, financial analysis and inter-company comparison. The last part of the thesis, which is based on the results of the analytical part, is devoted to the actual proposal of a solution to improve the financial situation of the company.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.