1. An architectural understanding of natural sway frequencies in trees
- Author
-
Tobias Jackson, Pasi Raumonen, Rosa C. Goodman, John S. Selker, Yadvinder Malhi, John Moore, Kim Calders, Phil Wilkes, Kenneth R. James, Daniel C. Burcham, Andrew Burt, Amanda Bunce, T.H.M. Van Emmerik, Alexander Shenkin, Alvaro Lau, Niall Origo, Mathias Disney, Martin Herold, Brian Kane, J. Gonzalez De Tanago Meñaca, Thierry Fourcaud, University of Oxford [Oxford], Dept Biol & Ecol Engn, Oregon State University (OSU), Dept Geog, University College of London [London] (UCL), Neurosciences Department, Case Western Reserve University [Cleveland], Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD [France-Sud]), Oxford University Centre for the Environment (OUCE), Friedrich-Schiller-Universität Jena, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Subjects
Terrestrial laser scanning ,0106 biological sciences ,010504 meteorology & atmospheric sciences ,F62 - Physiologie végétale - Croissance et développement ,Wind ,Forests ,Atmospheric sciences ,Residual ,Hydrology and Quantitative Water Management ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,F50 - Anatomie et morphologie des plantes ,01 natural sciences ,Biochemistry ,Trees ,Tree architecture ,Laboratory of Geo-information Science and Remote Sensing ,K01 - Foresterie - Considérations générales ,Finite-element analysis ,natural frequencies ,forêt résineuse ,Mathematics ,U10 - Informatique, mathématiques et statistiques ,Vent ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,PE&RC ,Forêt ,finite-element analysis ,tree architecture ,terrestrial laser scanning ,Temperate rainforest ,Biotechnology ,Hydrologie en Kwantitatief Waterbeheer ,Damping ratio ,F40 - Écologie végétale ,P40 - Météorologie et climatologie ,Biomedical Engineering ,Biophysics ,Bioengineering ,Models, Biological ,Natural frequencies ,Biomaterials ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Forest ecology ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,fundamental frequency ,Fundamental frequency ,Wind damage ,0105 earth and related environmental sciences ,Morphologie végétale ,Natural frequency ,Life Sciences–Physics interface ,wind damage ,15. Life on land ,Tree (graph theory) ,Field (geography) ,Propriété mécanique ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,010606 plant biology & botany - Abstract
International audience; The relationship between form and function in trees is the subject of a longstanding debate in forest ecology and provides the basis for theories concerning forest ecosystem structure and metabolism. Trees interact with the wind in a dynamic manner and exhibit natural sway frequencies and damping processes that are important in understanding wind damage. Tree-wind dynamics are related to tree architecture, but this relationship is not well understood. We present a comprehensive view of natural sway frequencies in trees by compiling a dataset of field measurement spanning conifers and broadleaves, tropical and temperate forests. The field data show that a cantilever beam approximation adequately predicts the fundamental frequency of conifers, but not that of broadleaf trees. We also use structurally detailed tree dynamics simulations to test fundamental assumptions underpinning models of natural frequencies in trees. We model the dynamic properties of greater than 1000 trees using a finite-element approach based on accurate three-dimensional model trees derived from terrestrial laser scanning data. We show that (1) residual variation, the variation not explained by the cantilever beam approximation, in fundamental frequencies of broadleaf trees is driven by their architecture; (2) slender trees behave like a simple pendulum, with a single natural frequency dominating their motion, which makes them vulnerable to wind damage and (3) the presence of leaves decreases both the fundamental frequency and the damping ratio. These findings demonstrate the value of new three-dimensional measurements for understanding wind impacts on trees and suggest new directions for improving our understanding of tree dynamics from conifer plantations to natural forests.
- Published
- 2019
- Full Text
- View/download PDF