We have integrated gene expression profiling with database and literature mining, mechanistic modeling, and cell culture experiments to identify intercellular and intracellular networks regulating blood stem cell self-renewal. Blood stem cell fate in vitro is regulated non-autonomously by a coupled positive–negative intercellular feedback circuit, composed of megakaryocyte-derived stimulatory growth factors (VEGF, PDGF, EGF, and serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9). The antagonistic signals converge in a core intracellular network focused around PI3K, Raf, PLC, and Akt. Model simulations enable functional classification of the novel endogenous ligands and signaling molecules., Intercellular (between cell) communication networks are required to maintain homeostasis and coordinate regenerative and developmental cues in multicellular organisms. Despite the recognized importance of intercellular networks in regulating adult stem and progenitor cell fate, the specific cell populations involved, and the underlying molecular mechanisms are largely undefined. Although a limited number of studies have applied novel bioinformatic approaches to unravel intercellular signaling in other cell systems (Frankenstein et al, 2006), a comprehensive analysis of intercellular communication in a stem cell-derived, hierarchical tissue network has yet to be reported. As a model system to explore intercellular communication networks in a hierarchically organized tissue, we cultured human umbilical cord blood (UCB)-derived stem and progenitor cells in defined, minimal cytokine-supplemented liquid culture (Madlambayan et al, 2006). To systematically explore the molecular and cellular dynamics underlying primitive progenitor growth and differentiation, gene expression profiles of primitive (lineage negative; Lin−) and mature (lineage positive; Lin+) populations were generated during phases of stem cell expansion versus depletion. Parallel phenotypic and subproteomic experiments validated that mRNA expression correlated with complex measures of proteome activity (protein secretion and cell surface expression). Using a curated list of secreted ligand–receptor interactions and published expression profiles of purified mature blood populations, we implemented a novel algorithm to reconstruct the intercellular signaling networks established between stem cells and multi-lineage progeny in vitro. By correlating differential expression patterns with stem cell growth, we predict cell populations, pathways, and secreted ligands associated with stem cell self-renewal and differentiation (Figure 3A). We then tested the correlative predictions in a series of cell culture experiments. UCB progenitor cell cultures were supplemented with saturating amounts of 18 putative regulatory ligands, or cocultured with purified mature blood lineages (megakaryocytes, monocytes, and erythrocytes), and analyzed for effects on total cell, progenitor, and primitive progenitor growth. At the primitive progenitor level, 3/5 novel predicted stimulatory ligands (EGF, PDGFB, and VEGF) displayed significant positive effects, 5/7 predicted inhibitory factors (CCL3, CCL4, CXCL10, TNFSF9, and TGFB2) displayed negative effects, whereas only 1/5 non-correlated ligand (CXCL7) displayed an effect. Also consistent with predictions from gene expression data, megakaryocytes and monocytes were found to stimulate and inhibit primitive progenitor growth, respectively, and these effects were attributable to differential secretome profiles of stimulatory versus inhibitory ligands. Cellular responses to external stimuli, particularly in heterogeneous and dynamic cell populations, represent complex functions of multiple cell fate decisions acting both directly and indirectly on the target (stem cell) populations. Experimentally distinguishing the mode of action of cytokines is thus a difficult task. To address this we used our previously published interactive model of hematopoiesis (Kirouac et al, 2009) to classify experimentally identified regulatory ligands into one of four distinct functional categories based on their differential effects on cell population growth. TGFB2 was classified as a proliferation inhibitor, CCL4, CXCL10, SPARC, and TNFSF9 as self-renewal inhibitors, CCL3 a proliferation stimulator, and EGF, VEGF, and PDGFB as self-renewal stimulators. Stem and progenitor cells exposed to combinatorial extracellular signals must propagate this information through intracellular molecular networks, and respond appropriately by modifying cell fate decisions. To explore how our experimentally identified positive and negative regulatory signals are integrated at the intracellular level, we constructed a blood stem cell self-renewal signaling network through extensive literature curation and protein–protein interaction (PPI) network mapping. We find that signal transduction pathways activated by the various stimulatory and inhibitory ligands converge on a limited set of molecular control nodes, forming a core subnetwork enriched for known regulators of self-renewal (Figure 6A). To experimentally test the intracellular signaling molecules computationally predicted as regulators of stem cell self-renewal, we obtained five small molecule antagonists against the kinases Phosphatidylinositol 3-kinase (PI3K), Raf, Akt, Phospholipase C (PLC), and MEK1. Liquid cultures were supplemented with the five molecules individually, and resultant cell population outputs compared against model simulations to deconvolute the functional effects on proliferation (and survival) versus self-renewal. This analysis classifies inhibition of PI3K and Raf activity as selectively targeting self-renewal, PLC as selectively targeting survival, and Akt as selectively targeting proliferation; MEK inhibition appears non-specific for these processes. This represents the first systematic characterization of how cell fate decisions are regulated non-autonomously through lineage-specific interactions with differentiated progeny. The complex intercellular communication networks can be approximated as an antagonistic positive–negative feedback circuit, wherein progenitor expansion is modulated by a balance of megakaryocyte-derived stimulatory factors (EGF, PDGF, VEGF, and possibly serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9). This complex milieu of endogenous regulatory signals is integrated and processed within a core intracellular signaling network, resulting in modulation of cell-level kinetic parameters (proliferation, survival, and self-renewal). We reconstruct a stem cell associated intracellular network, and identify PI3K, Raf, Akt, and PLC as functionally distinct signal integration nodes, linking extracellular and intracellular signaling. These findings lay the groundwork for novel strategies to control blood stem cell self-renewal in vitro and in vivo., Intercellular (between cell) communication networks maintain homeostasis and coordinate regenerative and developmental cues in multicellular organisms. Despite the importance of intercellular networks in stem cell biology, their rules, structure and molecular components are poorly understood. Herein, we describe the structure and dynamics of intercellular and intracellular networks in a stem cell derived, hierarchically organized tissue using experimental and theoretical analyses of cultured human umbilical cord blood progenitors. By integrating high-throughput molecular profiling, database and literature mining, mechanistic modeling, and cell culture experiments, we show that secreted factor-mediated intercellular communication networks regulate blood stem cell fate decisions. In particular, self-renewal is modulated by a coupled positive–negative intercellular feedback circuit composed of megakaryocyte-derived stimulatory growth factors (VEGF, PDGF, EGF, and serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9). We reconstruct a stem cell intracellular network, and identify PI3K, Raf, Akt, and PLC as functionally distinct signal integration nodes, linking extracellular, and intracellular signaling. This represents the first systematic characterization of how stem cell fate decisions are regulated non-autonomously through lineage-specific interactions with differentiated progeny.