1. Subgrade performance assessment for rigid runway using long-term pavement performance database
- Author
-
Guo-Guang Liu, Lei-Yang Pei, and Zhi-Wei Wu
- Subjects
rigid runway ,subgrade performance assessment ,subgrade performance index ,long-term pavement performance ,heavy weight deflectometer ,envelope method ,Transportation engineering ,TA1001-1280 - Abstract
Maintaining desired subgrade performance is an effective way to reduce runway pavement deterioration. Due to lack of extensive field test data, life-cycle performance of runway subgrade has not been fully understood. In order to quantitatively estimate subgrade condition, a novel method of evaluating subgrade performance was developed and validated using the 726 sets of Heavy Weight Deflectometer (HWD) test data of ten runway sections. Statistical analysis demonstrates that the structural behaviour of rigid runway subgrade follows normal distribution in different service stages and can be efficiently evaluated by the subgrade performance index (ψ). The results of factor analysis show that Accumulated Air Traffic Volume (ATV) during service life is the major cause of spatial variations in subgrade condition. In the designed service period of runway, it validates that sea-reclaimed subgrade results in faster degradation in the initial stage of service life while thicker pavement exhibits better capability in protecting the subgrade soil in long-term view. Besides, the differences in applied loads and pavement thickness give rise to the subgrade performance variation in longitudinal direction. Meanwhile, the comparison between the main and the less trafficked test lines in transversal direction reveals that the aircraft impacts play a positive role in resisting the natural fatigue process. By the suggested method, subgrade performance of HWD test points can be categorized into 4 levels from “Excellent”, “Good”, “Fair” to “Poor” based on ψ value. It is helpful for airport agency to make scientific decisions on Maintenance and Rehabilitation (M&R) treatment by calculating the effective area of envelope (β) using the ratio of subgrade performance (η).
- Published
- 2024
- Full Text
- View/download PDF