1. Starch-mediated colloidal chemistry for highly reversible zinc-based polyiodide redox flow batteries
- Author
-
Zhiquan Wei, Zhaodong Huang, Guojin Liang, Yiqiao Wang, Shixun Wang, Yihan Yang, Tao Hu, and Chunyi Zhi
- Subjects
Science - Abstract
Abstract Aqueous Zn-I flow batteries utilizing low-cost porous membranes are promising candidates for high-power-density large-scale energy storage. However, capacity loss and low Coulombic efficiency resulting from polyiodide cross-over hinder the grid-level battery performance. Here, we develop colloidal chemistry for iodine-starch catholytes, endowing enlarged-sized active materials by strong chemisorption-induced colloidal aggregation. The size-sieving effect effectively suppresses polyiodide cross-over, enabling the utilization of porous membranes with high ionic conductivity. The developed flow battery achieves a high-power density of 42 mW cm−2 at 37.5 mA cm−2 with a Coulombic efficiency of over 98% and prolonged cycling for 200 cycles at 32.4 Ah L−1 posolyte (50% state of charge), even at 50 °C. Furthermore, the scaled-up flow battery module integrating with photovoltaic packs demonstrates practical renewable energy storage capabilities. Cost analysis reveals a 14.3 times reduction in the installed cost due to the applicability of cheap porous membranes, indicating its potential competitiveness for grid energy storage.
- Published
- 2024
- Full Text
- View/download PDF