31 results on '"Zapata Arteaga, Osnat"'
Search Results
2. Upscaling Thermoelectrics: Micron-Thick, Half-a-Meter-Long Carbon Nanotube Films with Monolithic Integration of p- and n-Legs
- Author
-
Zapata-Arteaga, Osnat, primary, Dörling, Bernhard, additional, Alvarez-Corzo, Ivan, additional, Xu, Kai, additional, Reparaz, Juan Sebastián, additional, and Campoy-Quiles, Mariano, additional
- Published
- 2024
- Full Text
- View/download PDF
3. Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte Differentiation
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), European Commission, Generalitat de Catalunya, Fundación la Caixa, Consejo Superior de Investigaciones Científicas (España), European Cooperation in Science and Technology, Srinivasan, Sumithra Y. [0000-0002-0473-9801], Cler, Marina [0000-0001-7433-5020], Zapata Arteaga, Osnat [0000-0002-0844-2773], Dörling, Bernhard [0000-0003-3171-0526], Campoy Quiles, Mariano [0000-0002-8911-640X], Martínez, Elena [0000-0002-6585-4213], Engel, Elisabeth [0000-0003-4855-8874], Laromaine, Anna [0000-0002-4764-0780], Srinivasan, Sumithra Y., Cler, Marina, Zapata Arteaga, Osnat, Dörling, Bernhard, Campoy Quiles, Mariano, Martínez, Elena, Engel, Elisabeth, Pérez Amodio, Soledad, Laromaine, Anna, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), European Commission, Generalitat de Catalunya, Fundación la Caixa, Consejo Superior de Investigaciones Científicas (España), European Cooperation in Science and Technology, Srinivasan, Sumithra Y. [0000-0002-0473-9801], Cler, Marina [0000-0001-7433-5020], Zapata Arteaga, Osnat [0000-0002-0844-2773], Dörling, Bernhard [0000-0003-3171-0526], Campoy Quiles, Mariano [0000-0002-8911-640X], Martínez, Elena [0000-0002-6585-4213], Engel, Elisabeth [0000-0003-4855-8874], Laromaine, Anna [0000-0002-4764-0780], Srinivasan, Sumithra Y., Cler, Marina, Zapata Arteaga, Osnat, Dörling, Bernhard, Campoy Quiles, Mariano, Martínez, Elena, Engel, Elisabeth, Pérez Amodio, Soledad, and Laromaine, Anna
- Abstract
The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds' transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results hi
- Published
- 2023
4. Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte Differentiation
- Author
-
Srinivasan, Sumithra Yasaswini, primary, Cler, Marina, additional, Zapata-Arteaga, Osnat, additional, Dörling, Bernhard, additional, Campoy-Quiles, Mariano, additional, Martínez, Elena, additional, Engel, Elisabeth, additional, Pérez-Amodio, Soledad, additional, and Laromaine, Anna, additional
- Published
- 2023
- Full Text
- View/download PDF
5. Design Rules for Polymer Blends with High Thermoelectric Performance
- Author
-
Zapata-Arteaga, Osnat, Marina, Sara, Zuo, Guangzheng, Xu, Kai, Dorling, Bernhard, Alberto Perez, Luis, Sebastian Reparaz, Juan, Martin, Jaime, Kemerink, Martijn, Campoy-Quiles, Mariano, Zapata-Arteaga, Osnat, Marina, Sara, Zuo, Guangzheng, Xu, Kai, Dorling, Bernhard, Alberto Perez, Luis, Sebastian Reparaz, Juan, Martin, Jaime, Kemerink, Martijn, and Campoy-Quiles, Mariano
- Abstract
A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10-15% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined., Funding Agencies|Spanish Ministry of Science and InnovationSpanish Government [CEX2019-000917-S, PGC2018-095411- B-I00, PGC2018-094620-A-I00, MAT2017-90024-P]; European Research Council (ERC)European Research Council (ERC)European Commission [648901, 963954]; Ministerio de Ciencia, Innovacion y UniversidadesSpanish Government; European Regional Development FundEuropean Commission; European Social FundEuropean Social Fund (ESF); CSIC Open Access Publication Support Initiative through its Unidad de Recursos de Informacion Cientifica para la Investigacion (URICI); Carl Zeiss Foundation; Alexander von Humboldt FoundationAlexander von Humboldt Foundation
- Published
- 2022
- Full Text
- View/download PDF
6. Design Rules for Polymer Blends with High Thermoelectric Performance
- Author
-
Ministerio de Ciencia e Innovación (España), European Commission, European Research Council, CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Carl Zeiss Foundation, Alexander von Humboldt Foundation, Zapata Arteaga, Osnat, Marina, Sara, Zuo, Guangzheng, Xu, Kai, Dörling, Bernhard, Pérez, Luis Alberto, Reparaz, J. Sebastian, Martín, Jaime, Kemerink, Martijn, Campoy Quiles, Mariano, Ministerio de Ciencia e Innovación (España), European Commission, European Research Council, CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Carl Zeiss Foundation, Alexander von Humboldt Foundation, Zapata Arteaga, Osnat, Marina, Sara, Zuo, Guangzheng, Xu, Kai, Dörling, Bernhard, Pérez, Luis Alberto, Reparaz, J. Sebastian, Martín, Jaime, Kemerink, Martijn, and Campoy Quiles, Mariano
- Abstract
A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10–15% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined.
- Published
- 2022
7. Design Rules for Polymer Blends with High Thermoelectric Performance
- Author
-
Zapata‐Arteaga, Osnat, primary, Marina, Sara, additional, Zuo, Guangzheng, additional, Xu, Kai, additional, Dörling, Bernhard, additional, Pérez, Luis Alberto, additional, Reparaz, Juan Sebastián, additional, Martín, Jaime, additional, Kemerink, Martijn, additional, and Campoy‐Quiles, Mariano, additional
- Published
- 2022
- Full Text
- View/download PDF
8. Doping Approaches for Organic Semiconductors
- Author
-
Scaccabarozzi, Alberto D., primary, Basu, Aniruddha, additional, Aniés, Filip, additional, Liu, Jian, additional, Zapata-Arteaga, Osnat, additional, Warren, Ross, additional, Firdaus, Yuliar, additional, Nugraha, Mohamad Insan, additional, Lin, Yuanbao, additional, Campoy-Quiles, Mariano, additional, Koch, Norbert, additional, Müller, Christian, additional, Tsetseris, Leonidas, additional, Heeney, Martin, additional, and Anthopoulos, Thomas D., additional
- Published
- 2021
- Full Text
- View/download PDF
9. A fast-screening method for the thermal and electrical conductivity in doped organic semiconductors.
- Author
-
Zapata Arteaga, Osnat, primary, Perevedentsev, Aleksandr, additional, Marina, Sara, additional, Martin, Jaime, additional, Sebastián Reparaz, Juan, additional, and Campoy-Quiles, Mariano, additional
- Published
- 2021
- Full Text
- View/download PDF
10. Improving the performance of organic thermoelectrics
- Author
-
Zapata Arteaga, Osnat, Campoy-Quiles, Mariano, Lopeandía Fernández, Aitor, and Campoy Quiles, Mariano
- Subjects
Dopaje ,Ciències Experimentals ,Termoelèctrics orgànics ,Polímeros conjugados ,Dopatge ,Doping ,Organic thermoelectrics ,Termoeléctricos orgánicos ,Polímers conjugats ,Conjugated polymers - Abstract
En l'actual era de la Internet de les Coses (de l'anglès, IOT), els dispositius de detecció intel·ligents estan canviant molt el món en què vivim, des de com percebem el nostre entorn fins a com gastem l'energia. Fonts d'energia per a aquests dispositius seran essencials, especialment si no requereixen manteniment, són flexibles, barates, altament processable o fins i tot d'un sol ús. Els materials termoelèctrics orgànics --- semiconductors que poden transformar la calor en electricitat --- poden complir aquestes característiques. No obstant això, en els materials d'última generació encara hi ha aspectes que necessiten ser millorats; com el rendiment termoelèctric, estimat mitjançant la figura de mèrit ZT i l'estabilitat termoelèctrica sota continu estrès tèrmic. Aquesta tesi informa sobre estratègies per millorar l'eficiència i estabilitat termoelèctriques. Com a sistema de referència fem servir PBTTT dopat amb l'acceptor molecular F4TCNQ. Com a eina transversal per als nostres estudis, desenvolupem mètodes de fabricació i caracterització d'alt rendiment basats en gradients de tractament tèrmic, dopat i gruix per estudiar i correlacionar la relació entre la microestructura, les propietats termoelèctriques i l'estabilitat en una gran quantitat de mostres. A la primera secció de resultats proposem una estratègia per millorar l'estabilitat termoelèctrica. Hem demostrat que la formació de complexos de càrrega (CTC per les seves sigles en anglès) generen mostres tèrmicament més resistents, encara que elèctricament menys conductores. Al desenvolupar un mètode per ajustar la relació de transferència de càrrega parcial a una transferència completa, podem millorar l'estabilitat a llarg termini sense sacrificar la conductivitat elèctrica. La segona secció de resultats aborda la relació entre la cristal·linitat, el transport tèrmic i el transport elèctric. Hem demostrat que el grau de cristal·linitat determina en gran mesura la conductivitat tèrmica de capa fina de polímer. Un cop dopem el material, fins i tot amb quantitats de dopant relativament petites augmenta la conductivitat elèctrica diversos ordres de magnitud, però es redueix la conductivitat tèrmica sense un deteriorament notable de la cristal·linitat. A la tercera part de resultats, ens enfoquem en una tècnica simple però efectiva per millorar simultàniament la conductivitat elèctrica i el coeficient de Seebeck. Utilitzant una matriu de PBTTT i afegint petites fraccions d'altres polímers, com RR-P3HT podem millorar l'ordre i la qualitat de la microestructura en la capa fina de polímer, així millorant les característiques de transport de càrrega. Encara que el nostre estudi se centra en una combinació particular de polímer i dopant, els nostres resultats amplien el coneixement actual de la relació entre la microestructura, transport termoelèctric i l'estabilitat. En la actual era de la Internet de las Cosas (del inglés, IoT), los dispositivos de detección inteligentes están cambiando mucho del mundo en el que vivimos, desde cómo percibimos nuestro entorno hasta cómo gastamos la energía. Fuentes de energía para tales dispositivos serán esenciales, especialmente si no requieren mantenimiento, son flexibles, baratas, altamente procesable o incluso desechables. Los materiales termoeléctricos orgánicos --- semiconductores que pueden transformar el calor en electricidad --- pueden cumplir estas características. Sin embargo, en los materiales de última generación todavía hay aspectos que necesitan ser mejorados; como el rendimiento termoeléctrico, estimado mediante la figura de mérito ZT y la estabilidad termoeléctrica bajo continuo estrés térmico. Esta tesis informa sobre estrategias para mejorar la eficiencia y estabilidad termoeléctricas. Como sistema de referencia empleamos PBTTT dopado con el aceptor molecular F4TCNQ. Como herramienta transversal para nuestros estudios, desarrollamos métodos de fabricación y caracterización de alto rendimiento basados en gradientes de tratamiento térmico, dopado y espesor para estudiar y correlacionar la relación entre la microestructura, las propiedades termoeléctricas y la estabilidad en una gran cantidad de muestras. En la primera sección de resultados proponemos una estrategia para mejorar la estabilidad termoeléctrica. Demostramos que la formación de complejos de carga (CTC) generan muestras térmicamente más resistentes, aunque menos eléctricamente menos conductora. Al desarrollar un método para ajustar la relación de transferencia de carga parcial a entera, podemos mejorar la estabilidad a largo plazo sin sacrificar la conductividad eléctrica. La segunda sección de resultados aborda la relación entre cristalinidad, transporte térmico y eléctrico. Demostramos que el grado de cristalinidad determina en gran medida la conductividad térmica de capa fina de polímero. Tras dopar, incluso un contenido de dopante relativamente pequeño aumenta la conductividad eléctrica en varios órdenes de magnitud, pero reduce la conductividad térmica sin un deterioro notable de la cristalinidad. En la tercera parte de resultados, nos enfocamos en una técnica simple pero efectiva para mejorar simultáneamente la conductividad eléctrica y el coeficiente de Seebeck. Al usar una matriz de PBTTT y agregar pequeñas fracciones de otros polímeros, como RR-P3HT podemos mejorar el orden y la calidad de la microestructura en la capa fina de polímero, así mejorando las características de transporte de carga. Aunque nuestro estudio se centra en una combinación particular de polímero y dopante, nuestros resultados amplían el conocimiento actual de la relación entre la microestructura, transporte termoeléctrico y la estabilidad. In the current Internet of Things (IoT) era, smart sensing-devices are changing much about the world we live in, from how we sense our surroundings to the way we spend energy. On-site power generators for such devices will be essential, especially if they are maintenance-free, flexible, cheap, printable, or even disposable. Organic thermoelectric materials --- semiconductors that can transform heat into electricity at near-room temperature --- can fulfill these characteristics. Nevertheless, there are still issues in the current state-of-the-art materials that need improvement, such as the thermoelectric performance, benchmarked by the dimensionless ZT, and the thermoelectric stability under continuous thermal stress. This thesis reports on strategies to improve thermoelectric efficiency and stability. As a testbed material system, we employ PBTTT doped with the molecular acceptor F4TCNQ. As a transversal tool for our studies, we developed high-throughput fabrication and characterization methods based on annealing-, doping- and thickness-gradients to study and correlate the relationship between microstructure, thermoelectric properties, and stability for many samples. The first set of results reports on a strategy to improve thermoelectric stability. We demonstrate that the formation of charge transfer complexes (CTCs) leads to more thermally enduring samples, although less electrically conductive. By developing a method to adjust the partial to integer charge-transfer ratio, we can improve the long-term stability without sacrificing the electrical conductivity. The subsequent chapter centers on the relationship between crystallinity and thermal and electric transport. We demonstrate that the degree of crystallinity largely determines the thermal conductivity of the film. Upon doping, even a relatively small dopant content increases the electrical conductivity several orders of magnitude but lowers the thermal conductivity without noticeable deterioration in the crystallinity. In the final chapter, we focus on a simple yet effective technique to simultaneously enhance the electrical conductivity and Seebeck coefficient. By using a matrix of PBTTT and adding small fractions of other polymers, such as RR-P3HT, we can enhance the order and microstructure quality of the film, improving the charge transport characteristics. While centered on a particular polymer and dopant combination, our results stretch the current knowledge of the relationship between the microstructure, thermal-electric transport, and stability. Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
- Published
- 2021
11. Doping Approaches for Organic Semiconductors
- Author
-
Scaccabarozzi, Alberto D., Basu, Aniruddha, Aniés, Filip, Liu, Jian, Zapata Arteaga, Osnat, Warren, Ross, Firdaus, Yuliar, Nugraha, Mohamad Insan, Lin, Yuanbao, Campoy Quiles, Mariano, Koch, Norbert, Müller, Christian, Tsetseris, Leonidas, Heeney, Martin, Anthopoulos, Thomas D., King Abdullah University of Science and Technology, Wilkinson Charitable Foundation, Swedish Research Council, and Knut and Alice Wallenberg Foundation
- Subjects
Charge transfer ,Semiconductors ,Doping ,Molecules ,Impurities - Abstract
This article is part of the Organic Bioelectronics special issue. Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping–processing–nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices. This work was from King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award nos. OSR-2018-CARF/CCF-3079 and OSR-2019- CRG8-4095.3. F.A. acknowledges the support from The Wilkinson Charitable Foundation. C.M. acknowledges financial support from the Swedish Research Council (grant no. 2018- 03824) and the Knut and Alice Wallenberg Foundation through a Wallenberg Academy Fellowship Prolongation grant.
- Published
- 2021
12. Improving the performance of organic thermoelectrics
- Author
-
Campoy Quiles, Mariano, Lopeandía Fernández, Aitor, Zapata Arteaga, Osnat, Campoy Quiles, Mariano, Lopeandía Fernández, Aitor, and Zapata Arteaga, Osnat
- Abstract
En l'actual era de la Internet de les Coses (de l'anglès, IOT), els dispositius de detecció intel·ligents estan canviant molt el món en què vivim, des de com percebem el nostre entorn fins a com gastem l'energia. Fonts d'energia per a aquests dispositius seran essencials, especialment si no requereixen manteniment, són flexibles, barates, altament processable o fins i tot d'un sol ús. Els materials termoelèctrics orgànics --- semiconductors que poden transformar la calor en electricitat --- poden complir aquestes característiques. No obstant això, en els materials d'última generació encara hi ha aspectes que necessiten ser millorats; com el rendiment termoelèctric, estimat mitjançant la figura de mèrit ZT i l'estabilitat termoelèctrica sota continu estrès tèrmic. Aquesta tesi informa sobre estratègies per millorar l'eficiència i estabilitat termoelèctriques. Com a sistema de referència fem servir PBTTT dopat amb l'acceptor molecular F4TCNQ. Com a eina transversal per als nostres estudis, desenvolupem mètodes de fabricació i caracterització d'alt rendiment basats en gradients de tractament tèrmic, dopat i gruix per estudiar i correlacionar la relació entre la microestructura, les propietats termoelèctriques i l'estabilitat en una gran quantitat de mostres. A la primera secció de resultats proposem una estratègia per millorar l'estabilitat termoelèctrica. Hem demostrat que la formació de complexos de càrrega (CTC per les seves sigles en anglès) generen mostres tèrmicament més resistents, encara que elèctricament menys conductores. Al desenvolupar un mètode per ajustar la relació de transferència de càrrega parcial a una transferència completa, podem millorar l'estabilitat a llarg termini sense sacrificar la conductivitat elèctrica. La segona secció de resultats aborda la relació entre la cristal·linitat, el transport tèrmic i el transport elèctric. Hem demostrat que el grau de cristal·linitat determina en gran mesura la conductivitat tèrmica de capa fina de polímer. U, En la actual era de la Internet de las Cosas (del inglés, IoT), los dispositivos de detección inteligentes están cambiando mucho del mundo en el que vivimos, desde cómo percibimos nuestro entorno hasta cómo gastamos la energía. Fuentes de energía para tales dispositivos serán esenciales, especialmente si no requieren mantenimiento, son flexibles, baratas, altamente procesable o incluso desechables. Los materiales termoeléctricos orgánicos --- semiconductores que pueden transformar el calor en electricidad --- pueden cumplir estas características. Sin embargo, en los materiales de última generación todavía hay aspectos que necesitan ser mejorados; como el rendimiento termoeléctrico, estimado mediante la figura de mérito ZT y la estabilidad termoeléctrica bajo continuo estrés térmico. Esta tesis informa sobre estrategias para mejorar la eficiencia y estabilidad termoeléctricas. Como sistema de referencia empleamos PBTTT dopado con el aceptor molecular F4TCNQ. Como herramienta transversal para nuestros estudios, desarrollamos métodos de fabricación y caracterización de alto rendimiento basados en gradientes de tratamiento térmico, dopado y espesor para estudiar y correlacionar la relación entre la microestructura, las propiedades termoeléctricas y la estabilidad en una gran cantidad de muestras. En la primera sección de resultados proponemos una estrategia para mejorar la estabilidad termoeléctrica. Demostramos que la formación de complejos de carga (CTC) generan muestras térmicamente más resistentes, aunque menos eléctricamente menos conductora. Al desarrollar un método para ajustar la relación de transferencia de carga parcial a entera, podemos mejorar la estabilidad a largo plazo sin sacrificar la conductividad eléctrica. La segunda sección de resultados aborda la relación entre cristalinidad, transporte térmico y eléctrico. Demostramos que el grado de cristalinidad determina en gran medida la conductividad térmica de capa fina de polímero. Tras dopar, incluso un co, In the current Internet of Things (IoT) era, smart sensing-devices are changing much about the world we live in, from how we sense our surroundings to the way we spend energy. On-site power generators for such devices will be essential, especially if they are maintenance-free, flexible, cheap, printable, or even disposable. Organic thermoelectric materials --- semiconductors that can transform heat into electricity at near-room temperature --- can fulfill these characteristics. Nevertheless, there are still issues in the current state-of-the-art materials that need improvement, such as the thermoelectric performance, benchmarked by the dimensionless ZT, and the thermoelectric stability under continuous thermal stress. This thesis reports on strategies to improve thermoelectric efficiency and stability. As a testbed material system, we employ PBTTT doped with the molecular acceptor F4TCNQ. As a transversal tool for our studies, we developed high-throughput fabrication and characterization methods based on annealing-, doping- and thickness-gradients to study and correlate the relationship between microstructure, thermoelectric properties, and stability for many samples. The first set of results reports on a strategy to improve thermoelectric stability. We demonstrate that the formation of charge transfer complexes (CTCs) leads to more thermally enduring samples, although less electrically conductive. By developing a method to adjust the partial to integer charge-transfer ratio, we can improve the long-term stability without sacrificing the electrical conductivity. The subsequent chapter centers on the relationship between crystallinity and thermal and electric transport. We demonstrate that the degree of crystallinity largely determines the thermal conductivity of the film. Upon doping, even a relatively small dopant content increases the electrical conductivity several orders of magnitude but lowers the thermal conductivity without noticeable deterioration in the cry, Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
- Published
- 2021
13. Comparing different geometries for photovoltaic-thermoelectric hybrid devices based on organics
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Research Council, European Commission, CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Jurado, José Piers, Dörling, Bernhard, Zapata Arteaga, Osnat, Goñi, Alejandro R., Campoy Quiles, Mariano, Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Research Council, European Commission, CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Jurado, José Piers, Dörling, Bernhard, Zapata Arteaga, Osnat, Goñi, Alejandro R., and Campoy Quiles, Mariano
- Abstract
Coupling thermoelectrics (TE) with photovoltaics (PV) has emerged as an approach to solid-state solar harvesting, directly converting light and infrared heat into electricity. In this work, we compare PV-TE hybrid devices based on organic semiconductors in three different geometries: a reflection geometry, a non-contact transmission geometry, and a contact transmission geometry. The temperature rises of films of common organic thermoelectric materials, including poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), single-walled carbon nanotubes (swCNT), and poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT), were measured in configurations representative of the proposed geometries. Because organic semiconductors possess broadband light absorption and low thermal conductivities, a significant rise in temperature was observed under illumination for all geometries. We find, however, that the best configuration is, in fact, the transmission contact mode because it sums two effects. Operating under 1 sun illumination, the temperature of a commercial organic PV module increased by ≈30 K, which leads to an enhancement in OPV performance compared to room temperature. After attaching a thermoelectric to the OPV module, losses from convection are reduced, and the OPV module heats up even more, further increasing its efficiency while additionally enabling thermoelectric generation. Finally, we calculate theoretical thermoelectric efficiencies for the materials and their respective power densities.
- Published
- 2021
14. Doping Approaches for Organic Semiconductors
- Author
-
King Abdullah University of Science and Technology, Wilkinson Charitable Foundation, Swedish Research Council, Knut and Alice Wallenberg Foundation, Scaccabarozzi, Alberto D., Basu, Aniruddha, Aniés, Filip, Liu, Jian, Zapata Arteaga, Osnat, Warren, Ross, Firdaus, Yuliar, Nugraha, Mohamad Insan, Lin, Yuanbao, Campoy Quiles, Mariano, Koch, Norbert, Müller, Christian, Tsetseris, Leonidas, Heeney, Martin, Anthopoulos, Thomas D., King Abdullah University of Science and Technology, Wilkinson Charitable Foundation, Swedish Research Council, Knut and Alice Wallenberg Foundation, Scaccabarozzi, Alberto D., Basu, Aniruddha, Aniés, Filip, Liu, Jian, Zapata Arteaga, Osnat, Warren, Ross, Firdaus, Yuliar, Nugraha, Mohamad Insan, Lin, Yuanbao, Campoy Quiles, Mariano, Koch, Norbert, Müller, Christian, Tsetseris, Leonidas, Heeney, Martin, and Anthopoulos, Thomas D.
- Abstract
Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping–processing–nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
- Published
- 2021
15. Structure Dependent Photostability of ITIC and ITIC-4F
- Author
-
Ciencia y tecnología de polímeros, Polimeroen zientzia eta teknologia, Ciammaruchi, Laura, Zapata Arteaga, Osnat, Gutiérrez Fernández, Edgar, Martín Pérez, Jaime, Campoy Quiles, Mariano, Ciencia y tecnología de polímeros, Polimeroen zientzia eta teknologia, Ciammaruchi, Laura, Zapata Arteaga, Osnat, Gutiérrez Fernández, Edgar, Martín Pérez, Jaime, and Campoy Quiles, Mariano
- Abstract
Strong synthetic and engineering efforts have taken the efficiency of non-fullerene acceptor (NFA) based organic solar cells above 18% in a few years. Nonetheless, a deep understanding of the fundamental properties of this class of molecules is still missing. Here, we systematically investigated the morphological properties of two high efficient indacenodithienothiophene-based NFAs - namely ITIC and ITIC-4F - in order to correlate the hydrogen/fluorination substitutions with the materials structural and stability properties. We confirm that each NFA structurally evolves with increasing temperature into several polymorphs, identifying through spectroscopy their corresponding narrow temperature ranges. We demonstrate that the materials' response to accelerated stress tests (ASTs) is both substitution and polymorph dependent. ASTs underlined that the most vulnerable molecular segment corresponds to the thienothiophene C?C bond along the central backbone, together with the C?C linkage between the electron-rich donor and the electron-deficient acceptor moieties, with a degradation process triggered by oxygen and light. ITIC-4F showed lower oxidation capability and a higher bond strength retaining effect compared to ITIC. Lastly, the AST approach employed here allowed for the extrapolation of morphological and stability-related features within a high-throughput framework, and can be considered as a valuable methodological tool for future stability-related studies
- Published
- 2020
16. Reduction of the Lattice Thermal Conductivity of Polymer Semiconductors by Molecular Doping
- Author
-
Ciencia y tecnología de polímeros, Polimeroen zientzia eta teknologia, Zapata Arteaga, Osnat, Perevedentsev, Aleksandr, Marina Barbier, Sara Luisa, Martín Pérez, Jaime, Sebastián Reparaz, Juan, Campoy Quiles, Mariano, Ciencia y tecnología de polímeros, Polimeroen zientzia eta teknologia, Zapata Arteaga, Osnat, Perevedentsev, Aleksandr, Marina Barbier, Sara Luisa, Martín Pérez, Jaime, Sebastián Reparaz, Juan, and Campoy Quiles, Mariano
- Abstract
Here we show that molecular doping of polymer thermoelectrics increases the electrical conductivity while reducing the thermal conductivity. A high-throughput methodology based on annealing and doping gradients within individual films is employed to self-consistently analyze and correlate electrical and thermal characteristics for the equivalent of >100 samples. We focus on the benchmark material system poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) doped with molecular acceptor 2,3,5,6-tetrafittoro-7,7,8,8-tetra-cyanoquinodimethane (F4TCNQ). The thermal conductivity of neat PBTTT films is dominated by the degree of crystallinity, with thermal percolation observed for annealing temperatures >170 degrees C. Upon doping the samples with a relatively low amount of F4TCNQ (anion content <1 mol %), the thermal conductivity exhibits a two-fold reduction without compromising the crystalline quality, which resembles the effect of alloy scattering observed in several inorganic systems. The analysis of the relation between thermal and electrical conductivities shows that thermal transport is dominated by a doping-induced reduced lattice contribution.
- Published
- 2020
17. Structure dependent photostability of ITIC and ITIC-4F†
- Author
-
Ministerio de Economía y Competitividad (España), European Research Council, Ciammaruchi, Laura, Zapata Arteaga, Osnat, Gutiérrez Fernández, Edgar, Martín, Jaime, Campoy Quiles, Mariano, Ministerio de Economía y Competitividad (España), European Research Council, Ciammaruchi, Laura, Zapata Arteaga, Osnat, Gutiérrez Fernández, Edgar, Martín, Jaime, and Campoy Quiles, Mariano
- Abstract
Strong synthetic and engineering efforts have taken the efficiency of non-fullerene acceptor (NFA) based organic solar cells above 18% in a few years. Nonetheless, a deep understanding of the fundamental properties of this class of molecules is still missing. Here, we systematically investigated the morphological properties of two high efficient indacenodithienothiophene-based NFAs – namely ITIC and ITIC-4F – in order to correlate the hydrogen/fluorination substitutions with the materials structural and stability properties. We confirm that each NFA structurally evolves with increasing temperature into several polymorphs, identifying through spectroscopy their corresponding narrow temperature ranges. We demonstrate that the materials’ response to accelerated stress tests (ASTs) is both substitution and polymorph dependent. ASTs underlined that the most vulnerable molecular segment corresponds to the thienothiophene C[double bond, length as m-dash]C bond along the central backbone, together with the C[double bond, length as m-dash]C linkage between the electron-rich donor and the electron-deficient acceptor moieties, with a degradation process triggered by oxygen and light. ITIC-4F showed lower oxidation capability and a higher bond strength retaining effect compared to ITIC. Lastly, the AST approach employed here allowed for the extrapolation of morphological and stability-related features within a high-throughput framework, and can be considered as a valuable methodological tool for future stability-related studies.
- Published
- 2020
18. Reduction of the Lattice Thermal Conductivity of Polymer Semiconductors by Molecular Doping
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Generalitat de Catalunya, European Research Council, CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Zapata Arteaga, Osnat, Perevedentsev, Aleksandr, Marina, Sara, Martín, Jaime, Reparaz, J. S., Campoy Quiles, Mariano, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Generalitat de Catalunya, European Research Council, CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Zapata Arteaga, Osnat, Perevedentsev, Aleksandr, Marina, Sara, Martín, Jaime, Reparaz, J. S., and Campoy Quiles, Mariano
- Abstract
Here we show that molecular doping of polymer thermoelectrics increases the electrical conductivity while reducing the thermal conductivity. A high-throughput methodology based on annealing and doping gradients within individual films is employed to self-consistently analyze and correlate electrical and thermal characteristics for the equivalent of >100 samples. We focus on the benchmark material system poly(2,5- bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) doped with molecular acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). The thermal conductivity of neat PBTTT films is dominated by the degree of crystallinity, with thermal percolation observed for annealing temperatures >170 °C. Upon doping the samples with a relatively low amount of F4TCNQ (anion content <1 mol %), the thermal conductivity exhibits a two-fold reduction without compromising the crystalline quality, which resembles the effect of alloy scattering observed in several inorganic systems. The analysis of the relation between thermal and electrical conductivities shows that thermal transport is dominated by a doping-induced reduced lattice contribution.
- Published
- 2020
19. Closing the Stability–Performance Gap in Organic Thermoelectrics by Adjusting the Partial to Integer Charge Transfer Ratio
- Author
-
Ministerio de Economía, Industria y Competitividad (España), European Commission, Generalitat de Catalunya, Consejo Superior de Investigaciones Científicas (España), European Research Council, CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Zapata Arteaga, Osnat, Dörling, Bernhard, Perevedentsev, Aleksandr, Martín, Jaime, Reparaz, J. S., Campoy Quiles, Mariano, Ministerio de Economía, Industria y Competitividad (España), European Commission, Generalitat de Catalunya, Consejo Superior de Investigaciones Científicas (España), European Research Council, CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Zapata Arteaga, Osnat, Dörling, Bernhard, Perevedentsev, Aleksandr, Martín, Jaime, Reparaz, J. S., and Campoy Quiles, Mariano
- Abstract
Two doping mechanisms are known for the well-studied materials poly(3-hexylthiophene) (P3HT) and poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), namely, integer charge transfer (ICT) and charge transfer complex (CTC) formation. Yet, there is poor understanding of the effect of doping mechanism on thermal stability and the thermoelectric properties. In this work, we present a method to finely adjust the ICT to CTC ratio. Using it, we characterize electrical and thermal conductivities as well as the Seebeck coefficient and the long-term stability under thermal stress of P3HT and PBTTT of different ICT/CTC ratios. We establish that doping through the CTC results in more stable, yet lower conductivity samples compared to ICT doped films. Importantly, moderate CTC fractions of ∼33% are found to improve the long-term stability without a significant sacrifice in electrical conductivity. Through visible and IR spectroscopies, polarized optical microscopy, and grazing-incidence wide-angle X-ray scattering, we find that the CTC dopant molecule access sites within the polymer network are less prone to dedoping upon thermal exposure.
- Published
- 2020
20. Correction: Comparing different geometries for photovoltaic-thermoelectric hybrid devices based on organics
- Author
-
Jurado, José P., primary, Dörling, Bernhard, additional, Zapata-Arteaga, Osnat, additional, Goñi, Alejandro R., additional, and Campoy-Quiles, Mariano, additional
- Published
- 2021
- Full Text
- View/download PDF
21. Comparing different geometries for photovoltaic-thermoelectric hybrid devices based on organics
- Author
-
Jurado, José P., primary, Dörling, Bernhard, additional, Zapata-Arteaga, Osnat, additional, Goñi, Alejandro R., additional, and Campoy-Quiles, Mariano, additional
- Published
- 2021
- Full Text
- View/download PDF
22. A setup to measure the Seebeck coefficient and electrical conductivity of anisotropic thin-films on a single sample
- Author
-
Dörling, Bernhard, primary, Zapata-Arteaga, Osnat, additional, and Campoy-Quiles, Mariano, additional
- Published
- 2020
- Full Text
- View/download PDF
23. Reduction of the Lattice Thermal Conductivity of Polymer Semiconductors by Molecular Doping
- Author
-
Zapata-Arteaga, Osnat, primary, Perevedentsev, Aleksandr, additional, Marina, Sara, additional, Martin, Jaime, additional, Reparaz, Juan Sebastián, additional, and Campoy-Quiles, Mariano, additional
- Published
- 2020
- Full Text
- View/download PDF
24. Closing the Stability–Performance Gap in Organic Thermoelectrics by Adjusting the Partial to Integer Charge Transfer Ratio
- Author
-
Zapata-Arteaga, Osnat, primary, Dörling, Bernhard, additional, Perevedentsev, Aleksandr, additional, Martín, Jaime, additional, Reparaz, J. Sebastian, additional, and Campoy-Quiles, Mariano, additional
- Published
- 2020
- Full Text
- View/download PDF
25. Structure dependent photostability of ITIC and ITIC-4F
- Author
-
Ciammaruchi, Laura, primary, Zapata-Arteaga, Osnat, additional, Gutiérrez-Fernández, Edgar, additional, Martin, Jaime, additional, and Campoy-Quiles, Mariano, additional
- Published
- 2020
- Full Text
- View/download PDF
26. Thermoelectric and Optical Properties of PEDOT:PSS thin films
- Author
-
Kong, M., Pérez, L.A., Zapata Arteaga, Osnat, Campoy Quiles, Mariano, Mihi, Agustín, Reparaz, J. S., and Alonso Carmona, M. Isabel
- Abstract
Hybrid organic-inorganic composites could play an important role to improve the performance of flexible thermoelectric devices. Optimization of the organic component is an essential part of this purpose. Here, we focus on poly(3,4-ethylenedioxythiophene) (PEDOT)-based polymers, which are among the best candidates for thermoelectric harvesting of waste heat targeting near-room temperature applications, i.e., below 150ºC. In fact, this system is well known for its environmental stability, high electrical conductivity and solution processability. We investigate the optical properties and the thermoelectric performance of PEDOT doped with poly(styrenesulfonate) (PEDOT: PSS) thin films with different thicknesses ranging from 100 nm to about 2 ¿m. Thin films of PEDOT:PSS have been deposited by solution processing, mainly using blade coating. The optical properties and precise thicknesses of the thin films have been studied in the visible range using spectroscopic ellipsometry and standard FTIR measurements. The complex refractive index was determined for PEDOT:PSS thin films with different thicknesses. In particular, the precise thickness determination that can be obtained through ellipsometry measurements is used as input parameter to evaluate thermal conductivity measurements, for which a precise determination of the thickness is mandatory. Thermal conductivity measurements were performed using frequency-domain thermoreflectance (FDTR). The phase lag between the pump and probe lasers as a function of the excitation frequency and the heat equation show that the thermal conductivity of a 100 nm thick layer of PEDOT:PSS was about 0.3 W m-1K-1, in good agreement with recent determinations.
- Published
- 2019
27. 8th International Conference on Spectroscopic Ellipsometry: Conference Program & Abstracts
- Author
-
Azzam, R.M.A., García Pomar, Juan Luis, Molet, Pau, Matricardi, Cristiano, Garriga Bacardi, Miquel, Alonso Carmona, M. Isabel, Mihi, Agustín, Rodríguez Martínez, Xabier, Pascual San José, Enrique, Goñi, Alejandro R., Campoy Quiles, Mariano, Belova , Valentina, Gómez Castaño, Mayte, Otrokov, M. M., Chulkov, Eugene V., Tarancon, Albert, Pérez, Luis Alberto, Kong, M., Zapata Arteaga, Osnat, Reparaz, J. S., Baraldi, Marina, García Pardo, José Gonzalo, Serna, Rosalía, Valverde Guijarro, Ángel Luis, Rodríguez de los Santos Díaz, Rafael, Salazar Bloise, Félix, Álvarez-Herrero, Alberto, Belenguer Dávila, Tomás, Francisco López, Adrián, Toudert, Johann, Ramos, Nicolás, Peláez, Ramón J., Maté, Belén, and Liu, Shiyuan
- Abstract
Programa y libro de abstracts de las ponencias del ICSE 8, 8th International Conference on Spectroscopic Ellipsometry (Barcelona World Trade Center, 26-31 de mayo de 2019) https://congresses.icmab.es/icse8/
- Published
- 2019
28. Solar Harvesting: a Unique Opportunity for Organic Thermoelectrics?
- Author
-
Ministerio de Economía, Industria y Competitividad (España), Generalitat de Catalunya, Consejo Superior de Investigaciones Científicas (España), European Research Council, European Commission, Jurado, José Piers, Dörling, Bernhard, Zapata Arteaga, Osnat, Roig Serra, Anna, Mihi, Agustín, Campoy Quiles, Mariano, Ministerio de Economía, Industria y Competitividad (España), Generalitat de Catalunya, Consejo Superior de Investigaciones Científicas (España), European Research Council, European Commission, Jurado, José Piers, Dörling, Bernhard, Zapata Arteaga, Osnat, Roig Serra, Anna, Mihi, Agustín, and Campoy Quiles, Mariano
- Abstract
Thermoelectrics have emerged as a strategy for solar‐to‐electricity conversion, as they can complement photovoltaic devices as IR harvesters or operate as stand‐alone systems often under strong light and heat concentration. Inspired by the recent success of inorganic‐based solar thermoelectric generators (STEGs), in this manuscript, the potential of benchmark organic thermoelectric materials for solar harvesting is evaluated. It is shown that the inherent properties of organic semiconductors allow the possibility of fabricating organic STEGs (SOTEGs) of extraordinary simplicity. The broadband light absorption exhibited by most organic thermoelectrics combined with their low thermal conductivities results in a significant temperature rise upon illumination as seen by IR thermography. Under 2 sun illumination, a temperature difference of 50 K establishes between the illuminated and the non‐illuminated sides of a poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) film, and ≈40 K for a carbon nanotube/cellulose composite. Moreover, when using light as a heat source, the Seebeck coefficient remains unaffected, while a small photoconductivity effect is observed in PEDOT:PSS and carbon nanotubes. Then, the effect of several geometrical factors on the power output of a solar organic thermoelectric generator is investigated, enabling us to propose simple SOTEG geometries that capitalize on the planar geometry typical of solution‐processable materials. Finally, a proof‐of‐concept SOTEG is demonstrated, generating 180 nW under 2 suns.
- Published
- 2019
29. Solar Harvesting: a Unique Opportunity for Organic Thermoelectrics?
- Author
-
Jurado, José P., primary, Dörling, Bernhard, additional, Zapata‐Arteaga, Osnat, additional, Roig, Anna, additional, Mihi, Agustín, additional, and Campoy‐Quiles, Mariano, additional
- Published
- 2019
- Full Text
- View/download PDF
30. Farming thermoelectric paper
- Author
-
Abol-Fotouh, Deyaa, primary, Dörling, Bernhard, additional, Zapata-Arteaga, Osnat, additional, Rodríguez-Martínez, Xabier, additional, Gómez, Andrés, additional, Reparaz, J. Sebastian, additional, Laromaine, Anna, additional, Roig, Anna, additional, and Campoy-Quiles, Mariano, additional
- Published
- 2019
- Full Text
- View/download PDF
31. Doping Approaches for Organic Semiconductors.
- Author
-
Scaccabarozzi AD, Basu A, Aniés F, Liu J, Zapata-Arteaga O, Warren R, Firdaus Y, Nugraha MI, Lin Y, Campoy-Quiles M, Koch N, Müller C, Tsetseris L, Heeney M, and Anthopoulos TD
- Abstract
Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.