1. A "terminal" case of glycan catabolism: Structural and enzymatic characterization of the sialidases of Clostridium perfringens.
- Author
-
Medley BJ, Low KE, Irungu JDW, Kipchumba L, Daneshgar P, Liu L, Garber JM, Klassen L, Inglis GD, Boons GJ, Zandberg WF, Abbott DW, and Boraston AB
- Subjects
- Crystallography, X-Ray, Substrate Specificity, Catalytic Domain, Bacterial Proteins metabolism, Bacterial Proteins chemistry, Bacterial Proteins genetics, N-Acetylneuraminic Acid metabolism, Humans, Clostridium perfringens enzymology, Neuraminidase metabolism, Neuraminidase chemistry, Neuraminidase genetics, Polysaccharides metabolism, Polysaccharides chemistry
- Abstract
Sialic acids are commonly found on the terminal ends of biologically important carbohydrates, including intestinal mucin O-linked glycans. Pathogens such as Clostridium perfringens, the causative agent of necrotic enteritis in poultry and humans, have the ability to degrade host mucins and colonize the mucus layer, which involves removal of the terminal sialic acid by carbohydrate-active enzymes (CAZymes). Here, we present the structural and biochemical characterization of the GH33 catalytic domains of the three sialidases of C. perfringens and probe their substrate specificity. The catalytically active domains, which we refer to as NanH
GH33 , NanJGH33 , and NanIGH33 , displayed differential activity on various naturally occurring forms of sialic acid. We report the X-ray crystal structures of these domains in complex with relevant sialic acid variants revealing the molecular basis of how each catalytic domain accommodates different sialic acids. NanHGH33 displays a distinct preference for α-2,3-linked sialic acid, but can process α-2,6-linked sialic acid. NanJGH33 and NanIGH33 both exhibit the ability to process α-2,3- and α-2,6-linked sialic acid without any significant apparent preference. All three enzymes were sensitive to generic and commercially available sialidase inhibitors, which impeded sialidase activity in cultures as well as the growth of C. perfringens on sialylated glycans. The knowledge gained in these studies can be applied to in vivo models for C. perfringens growth and metabolism of mucin O-glycans, with a view toward future mitigation of bacterial colonization and infection of intestinal tissues., Competing Interests: Conflict of interest A. B. Boraston is an Editorial Board Member/Editor-in-Chief/Associate Editor/Guest Editor for JBC and was not involved in the editorial review or the decision to publish this article. The other authors declare they have no conflicts of interest with the contents of this article., (Crown Copyright © 2024. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF