20 results on '"Xavier, Cameleyre"'
Search Results
2. Combined
- Author
-
Marine, Deshors, Olivier, Guais, Virginie, Neugnot-Roux, Xavier, Cameleyre, Luc, Fillaudeau, and Jean Marie, Francois
- Subjects
fragmentation ,food and beverages ,Bioengineering and Biotechnology ,wheat bran ,solubilization ,Original Research ,enzymes cocktail ,viscocity - Abstract
Wheat bran is a foodstuff containing more than 40% of non-starch polysaccharides (NSPs) that are hardly digestible by monogastric animals. Therefore, cocktails enriched of hydrolytic enzymes (termed NSPases) are commonly provided as feed additives in animal nutrition. However, how these enzymes cocktails contribute to NSPs deconstruction remains largely unknown. This question was addressed by employing an original methodology that makes use of a multi-instrumented bioreactor that allows to dynamically monitor enzymes in action and to extract in-situ physical and ex-situ biochemical data from this monitoring. We report here that the deconstruction of destarched wheat bran by an industrial enzymes cocktail termed Rovabio® was entailed by two concurrent events: a particles fragmentation that caused in
- Published
- 2019
3. Bio-catalytic hydrolysis of paper pulp using in- and ex-situ multi-physical approaches: Focus on semidilute conditions to progress towards concentrated suspensions
- Author
-
Luc Fillaudeau, Dominique Anne-Archard, Tien Cuong Nguyen, Kim Anh To, Eric Lombard, Xavier Cameleyre, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), School of Biotechnology and Food Technology, Hanoi University of Science and Technology (HUST), Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, ANR-11-BTBR-0003, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), ANR-11-BTBR-0003,PROBIO3,Production biocatalytique de bioproduits lipidiques à partir de matières premières renouvelables et(2011), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université des Sciences et des Technologies de Hanoi - USTH (VIETNAM), Institut de Mécanique des Fluides de Toulouse - IMFT (Toulouse, France), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
- Subjects
Materials science ,Yield (engineering) ,paper pulp ,bioprocédé ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Mécanique des fluides ,020209 energy ,hydrolyse enzymatique ,02 engineering and technology ,engineering.material ,rheometry ,Kinetics modelling ,processus biophysique ,chemistry.chemical_compound ,Hydrolysis ,lignocellulose ,Enzymatic hydrolysis ,0202 electrical engineering, electronic engineering, information engineering ,Cellulose ,Yield stress ,Waste Management and Disposal ,biorefinery ,Rheometry ,Renewable Energy, Sustainability and the Environment ,Pulp (paper) ,enzymatic hydrolysis ,Forestry ,kinetics modelling ,Biorefinery ,Paper pulp ,yield stress ,chemistry ,Chemical engineering ,biocarburant ,engineering ,biofuel ,Particle size ,Agronomy and Crop Science ,Dimensionless quantity - Abstract
In order to make 2nd-generation biofuels more competitive, high solid-matter content has to be reached. To progress towards this target, the mechanism for destructuring lignocellulose fibres in semidilute conditions has to be well understood, as this configuration shows the basic mechanism which limits transfers and efficiency. This study aims to delve deeply into the biophysical and transfer limitations occurring during enzymatic hydrolysis. A specific experimental set-up associating in-situ and ex-situ physical (rheometry, chord length analysis) and biochemical analysis was used to expand the knowledge of hydrolysis of extruded softwood paper pulp over 24 h under different substrate concentrations (1%–3%) and enzyme doses (Accellerase 1500, 5 and 25 FPU/g cellulose). Non-Newtonian behaviour associated with pronounced yield stress stand as the major factors limiting process efficiency. A critical time was deduced from viscosity evolution, and the existence of a unique, dimensionless viscosity-time curve was established, suggesting similar mechanisms for fibre degradation. In addition, chord length distribution allowed for the description of population evolution and was discussed in the light of in-situ viscosity and hydrolysis yield. Physical (viscosity, particle size) and biochemical (substrate) kinetics were modelled (second-order) and coefficients identified. A chronology of the encountered phenomenological limitations demonstrates the necessity of optimising bioprocesses by considering physical parameters. A reference feed rate is proposed in order to reach high solid loading under fed-batch strategy.
- Published
- 2019
- Full Text
- View/download PDF
4. Using in-situ viscosimetry and morphogranulometry to explore hydrolysis mechanisms of filter paper and pretreated sugarcane bagasse under semi-dilute suspensions
- Author
-
Dominique Anne-Archard, Eric Lombard, Luc Fillaudeau, Tuan Le, Véronique Coma, Tien Cuong Nguyen, Xavier Cameleyre, Kim Anh To, Tuan Anh Pham, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III - Paul Sabatier (UT3), Center for Research and Development in Biotechnology (CRDB), Schools of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST), Institut de mécanique des fluides de Toulouse (IMFT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), TEAM 2 LCPO, Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux - ENSCPB (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE), Institut Polytechnique de Bordeaux - IPB (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université des Sciences et des Technologies de Hanoi - USTH (VIETNAM), Université de Bordeaux (FRANCE), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Laboratoire de Chimie des polymères organiques (LCPO), Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut de Mécanique des Fluides de Toulouse - IMFT (Toulouse, France), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 2 LCPO : Biopolymers & Bio-sourced Polymers, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), TECHNO 1 & 2-Erasmus Mundus (European Commission), HTMS BioAsie (Ministere des Affaires Etrangeres et du Developpement International, MAEDI, programme BIO-Asie) [34082NF], ANR-11-BTBR-0003,PROBIO3,Production biocatalytique de bioproduits lipidiques à partir de matières premières renouvelables et(2011), and Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,Environmental Engineering ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Mécanique des fluides ,Population ,Biomedical Engineering ,Bioengineering ,Biotechnologies ,Biophysique ,Filter paper ,01 natural sciences ,Suspension (chemistry) ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,03 medical and health sciences ,chemistry.chemical_compound ,Viscosity ,Rheology ,010608 biotechnology ,filter paper ,particle size distribution ,sugar cane bagasse ,Cellulose ,education ,in-situ viscosity ,education.field_of_study ,enzyme ,hydrolysis ,Chromatography ,Chemistry ,Dynamique des Fluides ,Hydrolysis ,Sugar cane bagasse ,Substrate (chemistry) ,Particle size distribution ,030104 developmental biology ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Enzyme ,Particle-size distribution ,In-situ viscosity ,enzyme [Sugarcane bagasse] ,Particle size ,Sugarcane bagasse: enzyme ,Biotechnology - Abstract
International audience; The relationship between in-situ viscosimetry, in- and ex-situ morphogranulometry, and biochemistry has been investigated during enzymatic hudrolysis of pretreated sugarcane bagasse (SCB, 3% w/v) and filter paper (FP, 1.5% w/v) at various enzyme dosages (0.3 to 25 FPU/g cellulose). Semi-dilute conditions (1.5 to 2 times higher than critical concentrations) were considered in order to generate non-Newtonian rheological behaviors and to avoid neglecting particle-particle interactions in opposition to dilute conditions. Observed phenomena as well as hydrolysis mechanisms including solvation, separation, fragmentation and solubilisation appeared to depend strongly on initial substrate properties. For both FP and SCB, suspension viscosities were correlated with particle size distributions and volume fractions during hydrolysis, but they exhibited strongly different trends. With SCB, a viscosity overshoot was clearly observed at enzyme loading ≤10FPU/g cellulose. This phenomenon is explained by the separation of agglomerates into individual fragments, leading to an increase in the total number of particles and a morphological shift of particles from sphere-like into fiber-like. With FP, the viscosity collapsed at the initial stage in relation to the volume reduction of coarse particles and the number increase of fine particles. Suspension viscosity was strongly dependent on the fraction of coarse population and nearly independent from the glucose conversion yield.
- Published
- 2017
- Full Text
- View/download PDF
5. Assessment of Candida shehatae viability by flow cytometry and fluorescent probes
- Author
-
Stéphane E. Guillouet, Xavier Cameleyre, Carole Molina-Jouve, Sandrine Alfenore, Sandy Garcier, Julie Monthéard, Eric Lombard, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), OSEO Innovation, INRA, Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Microbiology (medical) ,YEAST VIABILITY ,[SDV]Life Sciences [q-bio] ,Biology ,Microbiology ,Fluorescence ,Flow cytometry ,SACCHAROMYCES-CEREVISIAE ,03 medical and health sciences ,chemistry.chemical_compound ,ETHANOL-PRODUCTION ,XYLOSE ,medicine ,ALCOHOLIC FERMENTATION ,Viability assay ,Propidium iodide ,Fluorescein ,RAPASSESSMENT ,Molecular Biology ,Candida ,Fluorescent Dyes ,030304 developmental biology ,Candida shehatae ,0303 health sciences ,Microbial Viability ,Chromatography ,Staining and Labeling ,medicine.diagnostic_test ,030306 microbiology ,ALBICANS ,DEATH ,Reproducibility of Results ,Repeatability ,Fluoresceins ,CELL VIABILITY ,Molecular biology ,Yeast ,Activity ,Staining ,chemistry ,Propidium - Abstract
Quantification of different physiological states of Candida shehatae cells was performed by flow cytometry associated with two fluorescent probes. Propidium iodide and carboxyfluorescein diacetate acetoxymethyl ester fluorescent dyes were chosen based on data from the literature. A staining procedure, developed from the previous works was applied to the yeast. Then, the protocol was improved to fit with fermentation constraints such as no physiological interference between the staining procedure and the cells, shortest preparation time and small amounts of dyes. From this optimisation, propidium iodide was included in the sample at 8 mg/L whereas carboxyfluorescein was first diluted in Pluronic (R) agent and used at 3 mg/L, samples were incubated for 10 min at 40 degrees C. Repeatability and accuracy were evaluated to validate this flow cytometry procedure for viability determination. (C) 2012 Elsevier B.V. All rights reserved.
- Published
- 2012
- Full Text
- View/download PDF
6. Dynamic microbial response under ethanol stress to monitor Saccharomyces cerevisiae activity in different initial physiological states
- Author
-
G. Goma, Sandrine Alfenore, Carole Molina-Jouve, Y. Sanchez-Gonzalez, Xavier Cameleyre, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), CRITT Bio-Industrie, Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
Cell viability ,Cell regeneration ,[SDV]Life Sciences [q-bio] ,Saccharomyces cerevisiae ,Biomedical Engineering ,Stress tolerance ,Bioengineering ,Microbiology ,03 medical and health sciences ,chemistry.chemical_compound ,Bioreactors ,Stress, Physiological ,Bioreactor ,Yeast Saccharomyces cerevisiae ,Ethanol fuel ,Food science ,Viability assay ,Bioprocess ,030304 developmental biology ,0303 health sciences ,Ethanol ,biology ,030306 microbiology ,General Medicine ,biology.organism_classification ,Yeast ,Kinetics ,Ethanol production ,chemistry ,Fermentation ,Biotechnology - Abstract
Dynamic Saccharomyces cerevisiae responses to increasing ethanol stresses were investigated to monitor yeast viability and to optimize bioprocess performance when gradients occurred due to the specific configuration of multi-stage bioreactors with cell recycling or of large volume industrial bioreactors inducing chemical heterogeneities. Twelve fed-batch cultures were carried out with initial ethanol concentrations (P in) ranging from 5 g l−1 to 110 g l−1 with three different inoculums in different physiological states in terms of viability and quantity of ethanol produced (P o). For a given initial cell viability of 50%, the time to reach the maximum growth rate and maximum ethanol production rate was dependent on the difference P in − P o. Whatever the initial physiological state, when the initial ethanol concentration P in reached 100 g l−1, the yeasts died. Experimental results showed that the initial physiological state of the yeast was the major parameter to determine, the microorganisms’ capacities to adapt and resist environmental changes.
- Published
- 2008
- Full Text
- View/download PDF
7. Metabolic flux analysis model for optimizing xylose conversion into ethanol by the natural C5-fermenting yeast Candida shehatae
- Author
-
Carole Molina-Jouve, Sandrine Alfenore, Xavier Cameleyre, Julie Montheard, Carine Bideaux, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), OSEO Innovation, Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Analyse des flux métaboliques ,[SDV]Life Sciences [q-bio] ,Respiratory chain ,candida shehatae ,Chemostat ,Xylose ,Models, Biological ,Applied Microbiology and Biotechnology ,Fungal Proteins ,Pentose Phosphate Pathway ,03 medical and health sciences ,chemistry.chemical_compound ,Bioreactors ,Aldehyde Reductase ,Metabolic flux analysis ,Ethanol fuel ,Candida ,Chromatography ,Ethanol ,General Medicine ,Candida shehatae metabolism ,Yeast ,Ratio(oxygen/xylose) ,Oxygen ,Glucose ,030104 developmental biology ,chemistry ,Biochemistry ,Ethanol production ,Yield (chemistry) ,Fermentation ,production d'ethanol ,Biotechnology - Abstract
A metabolic flux analysis (MFA) model was developed to optimize the xylose conversion into ethanol using Candida shehatae strain. This metabolic model was compartmented and constructed with xylose as carbon substrate integrating the enzymatic duality of the first step of xylose degradation via an algebraic coefficient. The model included the pentose phosphate pathway, glycolysis, synthesis of major metabolites like ethanol, acetic acid and glycerol, the tricarboxylic acid cycle as well as the respiratory chain, the cofactor balance, and the maintenance. The biomass composition and thus production were integrated considering the major biochemical synthesis reactions from monomers to each constitutive macromolecule (i. e., proteins, lipids, polysaccharides, nucleic acids). The construction of the model resulted into a 122-linear equation system to be resolved. A first experiment allowed was to verify the accuracy of the model by comparing calculated and experimental data. The metabolic model was utilized to determine the theoretical yield taking into account oxido-reductive balance and to optimize ethanol production. The maximal theoretical yield was calculated at 0.62 Cmol(ethanol)/Cmol(xylose) for an oxygen requirement of 0.33 moloxygen/molxylose linked to the cofactors of the xylose reductase. Cultivations in chemostat mode allowed the fine tuning of both xylose and oxygen uptakes and showed that lower was the oxygen/xylose ratio, higher was the ethanol production yield. The best experimental ethanol production yield (0.51 Cmol(ethanol)/Cmol(xylose)) was obtained for an oxygen supply of 0.47 moloxygen/molxylose.
- Published
- 2016
- Full Text
- View/download PDF
8. Very high ethanol productivity in an innovative continuous two-stage bioreactor with cell recycle
- Author
-
Sandrine Alfenore, F. Ben Chaabane, Gilles Roux, Carole Molina-Jouve, Xavier Cameleyre, C. Bideaux, Stéphane E. Guillouet, A. Aldiguier, Philippe Blanc, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Laboratoire de Génie Chimique (LGC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, CRITT Bio-Industrie, Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Équipe DIagnostic, Supervision et COnduite (LAAS-DISCO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
- Subjects
0106 biological sciences ,[SDV]Life Sciences [q-bio] ,Cell Culture Techniques ,Ultrafiltration ,Biomass ,Cell Count ,Bioengineering ,Saccharomyces cerevisiae ,Biology ,Models, Biological ,01 natural sciences ,7. Clean energy ,03 medical and health sciences ,chemistry.chemical_compound ,Bioreactors ,010608 biotechnology ,Bioreactor ,Two-stage bioreactor ,Computer Simulation ,Ethanol fuel ,Cell Proliferation ,0303 health sciences ,Ethanol ,Chromatography ,Waste management ,030306 microbiology ,Cell recycle ,Equipment Design ,General Medicine ,Equipment Failure Analysis ,Glucose ,chemistry ,Fermentation ,Computer-Aided Design ,Steady state (chemistry) ,Industrial and production engineering ,Biotechnology - Abstract
The performance of an innovative two-stage continuous bioreactor with cell recycle-potentially capable of giving very high ethanol productivity-was investigated. The first stage was dedicated to cell growth, whereas the second stage was dedicated to ethanol production. A high cell density was obtained by an ultrafiltration module coupled to the outlet of the second reactor. A recycle loop from the second stage to the first one was tested to improve cell viability and activity. Cultivations of Saccharomyces cerevisiae in mineral medium on glucose were performed at 30 degrees Celsius and pH 4. At steady state, total biomass concentrations of 59 and 157 gDCW l(-1) and ethanol concentrations of 31 and 65 g l(-1) were obtained in the first and second stage, respectively. The residual glucose concentration was 73 g l(-1) in the first stage and close to zero in the second stage. The present study shows that a very high ethanol productivity (up to 41 g l(-1) h(-1)) can indeed be obtained with complete conversion of the glucose and with a high ethanol titre (8.3 degrees GL) in the two-stage system.
- Published
- 2006
- Full Text
- View/download PDF
9. [Untitled]
- Author
-
Xavier Cameleyre, Alexandros Yiannikouris, Jean-Pierre Jouany, Laurent Poughon, Jean Marie François, Claude-Gilles Dussap, and G. Bertin
- Subjects
Novel technique ,biology ,010401 analytical chemistry ,Saccharomyces cerevisiae ,Bioengineering ,04 agricultural and veterinary sciences ,General Medicine ,biology.organism_classification ,040401 food science ,01 natural sciences ,Applied Microbiology and Biotechnology ,Yeast ,0104 chemical sciences ,Microbiology ,Cell wall ,chemistry.chemical_compound ,0404 agricultural biotechnology ,Adsorption ,chemistry ,Biological system ,Mycotoxin ,Zearalenone ,Biotechnology - Abstract
Three models based on sigmoidal plotting were tested for their ability to describe zearalenone adsorption on Saccharomyces cerevisiae cell walls in vitro. All three models closely fitted the experimental data, but Hill's equation gave the most accurate parameters, and provided information on the physical and chemical mechanisms involved in the adsorption of mycotoxin on yeast cell walls.
- Published
- 2003
- Full Text
- View/download PDF
10. Reverse hydrolysis reaction in aqueous medium without any cosolvent
- Author
-
Alain Guibert, Xavier Cameleyre, Alain Bouchu, and Didier Combes
- Subjects
chemistry.chemical_classification ,Chymotrypsin ,biology ,Ketose ,Bioengineering ,Fructose ,Glycosidic bond ,General Medicine ,Transesterification ,Applied Microbiology and Biotechnology ,Biochemistry ,Catalysis ,chemistry.chemical_compound ,Hydrolysis ,chemistry ,Yield (chemistry) ,biology.protein ,Organic chemistry ,Molecular Biology ,Biotechnology - Abstract
The synthesis of L-tyrosine fructosyl ester, from fructose and L-tyrosine methyl ester, was carried out by a transesterification reaction catalyzed by α-chymotrypsin in water without cosolvent. The effect of fructose concentration and temperature for the transesterification reaction were determined on both specific activities and product yield. The influence of the presence of fructose has been studied regarding α-chymotrypsin and L-tyrosine fructosyl ester stabilities. It appeared that an increase of temperature enhanced enzyme activity but slumped the product yield because of the very weak stability of tyrosine fructosyl ester.
- Published
- 1997
- Full Text
- View/download PDF
11. In situ rheometry of concentrated cellulose fibre suspensions and relationships with enzymatic hydrolysis
- Author
-
Dominique Anne-Archard, Kim Anh To, Xavier Cameleyre, Eric Lombard, Cédric Binet, Véronique Coma, Luc Fillaudeau, Arthur Nouhen, Tien Cuong Nguyen, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), TEAM 2 LCPO, Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Hanoi Univ Sci & Technol, University of sciences and technologies of hanoi (USTH), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 2 LCPO : Biopolymers & Bio-sourced Polymers, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of Science and Technology of Hanoi (USTH), Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux - ENSCPB (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE), Institut Polytechnique de Bordeaux - IPB (FRANCE), Université de Bordeaux 1 (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Vietnam Academy of Science and Technology - VAST (VIETNAM), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Environmental Engineering ,Time Factors ,020209 energy ,Mécanique des fluides ,Bioengineering ,02 engineering and technology ,7. Clean energy ,Hydrolysis ,chemistry.chemical_compound ,Rheology ,Cellulase ,Electricity ,Suspensions ,Enzymatic hydrolysis ,Polymer chemistry ,0202 electrical engineering, electronic engineering, information engineering ,Cellulose ,Particle Size ,Waste Management and Disposal ,Hydrolyse ,Rheometry ,Renewable Energy, Sustainability and the Environment ,Chemistry ,Viscosity ,General Medicine ,021001 nanoscience & nanotechnology ,Microcrystalline cellulose ,Shear rate ,Paper pulp ,Chimie organique ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Particle size ,0210 nano-technology ,Lignocellulose - Abstract
International audience; This work combines physical and biochemical analyses to scrutinize liquefaction and saccharification of complex lignocellulose materials. A multilevel analysis (macroscopic: rheology, microscopic: particle size and morphology and molecular: sugar product) was conducted at the lab-scale with three matrices: microcrystalline cellulose (MCC), Whatman paper (WP) and extruded paper-pulp (PP). A methodology to determine on-line viscosity is proposed and validated using the concept of Metzner and Otto (1957) and Rieger and Novak's (1973). The substrate suspensions exhibited a shear-thinning behaviour with respect to the power law. A structured rheological model was established to account for the suspension viscosity as a function of shear rate and substrate concentration. The critical volume fractions indicate the transition between diluted, semi-diluted and concentrated regimes. The enzymatic hydrolysis was performed with various solid contents: MCC 273.6 gdm/L, WP 56.0 gdm/L, PP 35.1 gdm/L. During hydrolysis, the suspension viscosity decreased rapidly. The fibre diameter decreased two fold within 2 h of starting hydrolysis whereas limited bioconversion was obtained (10-15%).
- Published
- 2013
- Full Text
- View/download PDF
12. ProBio3 project: how to achieve scientific and technological challenges to boost the sustainable microbial production of lipids as biojet fuel and chemical compounds
- Author
-
Yohan Allouche, Xavier Cameleyre, Stéphane Guillouet, Sébastien Hulin, France Thevenieau, Laure Akomia, Carole Molina-Jouve, Airbus Operations SAS, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Syral, Sofiprotéol, INRA Transfert, Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), INRA-Transfert, Institut National de la Recherche Agronomique (INRA), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
BiojetFuel ,Yarrowia lipolytica ,ressources renouvelables ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Process (engineering) ,biokérozène ,lipides ,lcsh:TP670-699 ,chimie verte ,Biology ,Raw material ,7. Clean energy ,Biochemistry ,12. Responsible consumption ,lipids ,03 medical and health sciences ,Streptomyces lividans ,Production (economics) ,Bioprocess ,030304 developmental biology ,microorganismes oléagineux ,2. Zero hunger ,oleaginous microorganisms ,0303 health sciences ,030306 microbiology ,9. Industry and infrastructure ,business.industry ,green chemistry ,Pilot scale ,ProBio3 ,Environmental economics ,[SHS.ECO]Humanities and Social Sciences/Economics and Finance ,renewable resources ,Renewable energy ,Biotechnology ,Rhodotorula glutinis ,13. Climate action ,Cupriavidus necator ,lcsh:Oils, fats, and waxes ,business ,Agronomy and Crop Science ,Food Science ,Renewable resource - Abstract
International audience; The deal of ProBio3 project is to develop the microbial conversion on specific fatty acids of carbon substrates from renewable resources and industrial by-products. The main application fields are BiojetFuels and green chemistry. The objectives focus on the identification of renewable feedstock suitable for microbial nutritional requirements, the development of an intensive bioprocess, the proof of feasibility at pilot scale (m3) with the evaluation of environmental, economic and societal impacts. During 8 years, 16 French partners (9 research units LISBP, MICALIS, IJPB, IGM, IMFT, SQPOV, TSE, TWB, IFPen, 4 industries Airbus, EADS, Sofiproteol, Tereos et 3 technical centres ITERG, CVG, CREOL) associate their interdisciplinary competences from Life Sciences to Process Engineering including Economic and Social Sciences. With Investissement d’Avenir financial support, the expected impacts are increases of fundamental knowledge of lipid metabolism in oleaginous microorganisms, development of high-throughput tools to fasten industrial engineering strains and fermentation strategies, new extraction processes involving green solvents and realistic scale up studies towards an industrial pilot; with undeniable innovative aspects, the deal is to get competitive assets for leading international positions on a new biological route.; Probio3 a pour ambition de développer la production microbienne d’acides gras spécifiques par conversion de substrats carbonés issus de ressources renouvelables et de co-produits industriels. Les champs d’application sont le biokérozène et la chimie verte. Les objectifs de Probio3 concernent l’identification de ressources renouvelables adaptées aux exigences nutritionnelles des microorganismes, le développement de bioprocédés intensifs, la preuve de faisabilité du concept à l’échelle d’un pilote (m3) avec l’évaluation des impacts environnementaux, économiques et sociétaux. Durant 8 années, 16 partenaires français (9 publics LISBP, MICALIS, IJPB, IGM, IMFT, SQPOV, TSE, TWB, IFPen, 4 industriels Airbus, EADS, Sofiproteol, Tereos et 3 centres techniques ITERG, CVG, CREOL) associent leurs compétences interdisciplinaires associant les Sciences de la Vie au Génie des Procédés ainsi que les Sciences Economiques et Sociales. Avec le soutien financier des Investissements d’Avenir, les retombées attendues du projet sont des avancées dans la connaissance fondamentale du métabolisme lipidique chez les microorganismes oléagineux, l’accélération du développement de souches industrielles et de stratégies de fermentation par des technologies à haut-débit, des ruptures technologiques dans l’extraction des lipides et des études réalistes de changement d’échelle pour un pilote industriel; avec des aspects innovants indéniables, il s’agit d’acquérir des atouts compétitifs pour une position de leader international en production microbienne de lipides.’etitifs pour une position de leader en production microbienne de lipides.
- Published
- 2013
- Full Text
- View/download PDF
13. Bioperformance interpretation of a two-stage membrane bioreactor with cell recycling for intensive microbial production using residence time and internal age distributions
- Author
-
Carole Molina-Jouve, Christophe Andre, Luc Fillaudeau, Xavier Cameleyre, Carine Bideaux, Sandrine Alfenore, Lamia Ben Gaida, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Laboratoire d'Ecologie et de Technologie Microbiennes (LETMi), Institut National des Sciences Appliquées et de Technologie - Carthage (INSAT Carthage), Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université Sciences et Technologies - Bordeaux 1-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Centre National de la Recherche Scientifique (CNRS), Hautes Etudes d’Ingénieur [Lille] (HEI), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), JUNIA (JUNIA), and Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
- Subjects
0106 biological sciences ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Parametric study ,Bioengineering ,Membrane bioreactor ,Residence time (fluid dynamics) ,01 natural sciences ,Applied Microbiology and Biotechnology ,Biochemistry ,03 medical and health sciences ,Biological performance ,010608 biotechnology ,High cell density ,Growth rate ,Bioprocess ,Process engineering ,Internal age distribution ,030304 developmental biology ,0303 health sciences ,Residence time distribution ,business.industry ,Bioproduction ,Yeast ,Dilution ,Biotechnology ,Volume (thermodynamics) ,Viability ,Environmental science ,business - Abstract
Document Type : Proceedings Paper Conference Date : NOV 29-DEC 01, 2011 Conference Location : Lille, FRANCE Conference Sponsor : SFGP; International audience; Residence time distribution (RTD) and internal age distribution (IAD) approaches were used to investigate complex interactions between hydrodynamics and biological activity in an innovative two-stage continuous membrane bioreactor with cell recycling. This bioprocess was designed to investigate the behaviour of yeast (Saccharomyces cerevisiae) in extreme conditions and to intensify bioproduction. Based on established RTD/IAD models, a parametric study was conducted considering biological constraints (growth rate, viability and products kinetics) under realistic working conditions (reactor volume, feed, bleed, permeate and recirculation flowrates). Competition between internal recirculation and dilution rates was observed and described by a dimensionless circulation index, K. Bioprocess performance (cell viability, substrate and ethanol concentrations) was discussed according to RTD/IAD simulations of 12 cultures. Assuming a critical residence time within the second stage enabled us to define acceptable and unacceptable working conditions to maintain biological activity.
- Published
- 2013
- Full Text
- View/download PDF
14. Modelling of hydrodynamic behaviour of a two-stage bioreactor with cell recycling dedicated to intensive microbial production
- Author
-
Sandrine Alfenore, Carole Molina-Jouve, Christophe Andre, Xavier Cameleyre, Carine Bideaux, Lamia Ben Gaida, Luc Fillaudeau, Institut Supérieur de Biologie Appliquée de Médenine, Laboratoire d’Ecologie et de Technologie Microbienne, Institut National des Sciences Appliquées et de Technologie (INSAT), Université de Carthage - University of Carthage, Laboratoire de Génie des Procédés et Technologie Alimentaires (LGPTA), Institut National de la Recherche Agronomique (INRA), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,Work (thermodynamics) ,Materials science ,Polyphasic medium ,General Chemical Engineering ,[SDV]Life Sciences [q-bio] ,Mixing (process engineering) ,Continuous stirred-tank reactor ,02 engineering and technology ,Residence time (fluid dynamics) ,01 natural sciences ,Industrial and Manufacturing Engineering ,12. Responsible consumption ,modelling ,bioreactor ,020401 chemical engineering ,010608 biotechnology ,Bioreactor ,Environmental Chemistry ,0204 chemical engineering ,Process engineering ,business.industry ,General Chemistry ,Hydrodynamic ,Permeation ,Yield (chemistry) ,Batch processing ,business ,RTD - Abstract
An innovative two-stage continuous bioreactor with cell recycle (TSCB) previously allowed us to reach very high ethanol productivity (41 kg m −3 h −1 ) with the yeast Saccharomyces cerevisiae under high cell densities (∼100 gCDW/L) suitable for industrial transposition. Nevertheless, bioreactor performances and complex interactions between hydrodynamics (gas, liquid and solid phases) and biological activity (viability, conversion yield, ethanol stress) need to be investigated. In this work, an overall TSCB hydrodynamic identification (under abiotic conditions) was carried out by using residence time (RTD) and internal age (IAD) distribution studies, according to a suitable methodology. First, experiments led to identify and formulate the analytical RTD and IAD functions in continuous mode with and without recycling. Mixing time experiments were carried out in order to characterize batch mode for the liquid phase. Secondly, a systemic approach was used to identify the model parameters and characterize their evolution within the investigated operating conditions, and then to corroborate the reliability of the model by considering the experiments with recycling. For the gas phase, it was shown that each stage (R1 and R2) exhibited independent behaviour and could be modelled as a plug-flow reactor associated to j Continuous Stirred Tank Reactor, CSTR in series; the values of the model parameters ( α , j ) remained constant within the investigated operating range (VVM, Re and Re A ). For the liquid phase, the hydrodynamic behaviour of R1 and R2 could be represented by CSTR behaviour. A plug-flow reactor is thus proposed to describe the permeate compartment behaviour.
- Published
- 2012
- Full Text
- View/download PDF
15. A new test method to assess the bacterial deterioration of cementitious materials
- Author
-
Marie Coutand, Alexandra Bertron, Camille Magniont, Xavier Cameleyre, Gilles Escadeillas, Sandra Beaufort, Christine Lafforgue, Laboratoire Matériaux et Durabilité des constructions (LMDC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquees of Toulouse, France, Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Durability C ,Materials science ,PH ,Microorganism ,CONCRETE SEWER PIPES ,0211 other engineering and technologies ,Liquid manure ,Degradation C ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,BIOGENIC SULFURIC-ACID ,021105 building & construction ,SLURRY ,ATTACK ,General Materials Science ,Food science ,PASTES ,Effluent ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Waste management ,biology ,Bacteria ,Building and Construction ,Test method ,CORROSION ,Sterilization (microbiology) ,Biodegradation ,DEGRADATION ,biology.organism_classification ,Cement paste D ,[SPI.GCIV]Engineering Sciences [physics]/Civil Engineering ,Cementitious ,ORGANIC-ACIDS - Abstract
International audience; The biodegradation of cement-based matrices by agro-industrial effluents is a very complex phenomenon. In this work, a test was developed - the Build-Mat Bio-test (BMB test) - to examine the degradation mechanisms caused by microbial activity on any type of building material. The main objective of this device was to analyze and distinguish between the effects caused by the bacteria and those caused by their metabolites in the deterioration. In this study, the BMB test was used to evaluate the impact on cementitious matrices of the bacterium Escherichia coli, found in liquid manure. The mechanisms and kinetics of deterioration resulting from exposure to the bacterial culture or to the metabolites were compared with those obtained with synthetic organic acids alone. It was notably observed that the bacterial suspension caused more intense deterioration and higher alteration kinetics as compared to the medium without microorganisms and to the synthetic acid solution. (C) 2011 Elsevier Ltd. All rights reserved.
- Published
- 2011
- Full Text
- View/download PDF
16. Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose
- Author
-
Carole Molina-Jouve, Jean-Louis Uribelarrea, Stéphane E. Guillouet, Romain Fromanger, Xavier Cameleyre, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), CRITT Bio-Industrie, Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
Polymers ,[SDV]Life Sciences [q-bio] ,chemistry.chemical_element ,Bioengineering ,Xylose ,Xylitol ,Applied Microbiology and Biotechnology ,Oxygen ,Industrial Microbiology ,03 medical and health sciences ,chemistry.chemical_compound ,Arabitol ,Ethanol fuel ,Food science ,Candida ,030304 developmental biology ,Candida shehatae ,0303 health sciences ,Ethanol ,030306 microbiology ,Lignocellulosic ,Carbon ,Culture Media ,Kinetics ,Glucose ,chemistry ,Biochemistry ,Fermentation ,Energy source ,Biotechnology - Abstract
Carbon distribution and kinetics of Candida shehatae were studied in fed-batch fermentation with xylose or glucose (separately) as the carbon source in mineral medium. The fermentations were carried out in two phases, an aerobic phase dedicated to growth followed by an oxygen limitation phase dedicated to ethanol production. Oxygen limitation was quantified with an average specific oxygen uptake rate (OUR) varying between 0.30 and 2.48 mmolO(2) g dry cell weight (DCW)(-1) h(-1), the maximum value before the aerobic shift. The relations among respiration, growth, ethanol production and polyol production were investigated. It appeared that ethanol was produced to provide energy, and polyols (arabitol, ribitol, glycerol and xylitol) were produced to reoxidize NADH from assimilatory reactions and from the co-factor imbalance of the two-first enzymatic steps of xylose uptake. Hence, to manage carbon flux to ethanol production, oxygen limitation was a major controlled parameter; an oxygen limitation corresponding to an average specific OUR of 1.19 mmolO(2) g DCW(-1) h(-1) allowed maximization of the ethanol yield over xylose (0.327 g g(-1)), the average productivity (2.2 g l(-1) h(-1)) and the ethanol final titer (48.81 g l(-1)). For glucose fermentation, the ethanol yield over glucose was the highest (0.411 g g(-1)) when the specific OUR was low, corresponding to an average specific OUR of 0.30 mmolO(2) g DCW(-1) h(-1), whereas the average ethanol productivity and ethanol final titer reached the maximum values of 1.81 g l(-1) h(-1) and 54.19 g l(-1) when the specific OUR was the highest.
- Published
- 2010
- Full Text
- View/download PDF
17. Minimization of Glycerol Production during the High-Performance Fed-Batch Ethanolic Fermentation Process in Saccharomyces cerevisiae, Using a Metabolic Model as a Prediction Tool
- Author
-
Carole Molina-Jouve, Carine Bideaux, Sandrine Alfenore, Stéphane E. Guillouet, Xavier Cameleyre, Jean-Louis Uribelarrea, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), CRITT Bio-Industrie, Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
Glycerol ,[SDV]Life Sciences [q-bio] ,Saccharomyces cerevisiae ,Biology ,Ethanol fermentation ,Applied Microbiology and Biotechnology ,Models, Biological ,03 medical and health sciences ,chemistry.chemical_compound ,Industrial Microbiology ,Oxygen Consumption ,Predictive Value of Tests ,Gene Expression Regulation, Fungal ,Ethanol fuel ,Food science ,Biomass ,Ethanol metabolism ,030304 developmental biology ,0303 health sciences ,Ethanol ,Ecology ,030306 microbiology ,Carbon Dioxide ,Physiology and Biotechnology ,Yeast ,Aerobiosis ,Respiratory quotient ,chemistry ,Biochemistry ,Fermentation ,Food Science ,Biotechnology - Abstract
On the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae , a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would reduce glycerol production during ethanol fermentation. Experimental validation of the simulation results was done by monitoring the inlet substrate feeding during fed-batch S. cerevisiae cultivation in order to maintain the respiratory quotient (RQ) (defined as the CO 2 production to O 2 consumption ratio) value between 4 and 5. Compared to previous fermentations without glucose monitoring, the final glycerol concentration was successfully decreased. Although RQ-controlled fermentation led to a lower maximum specific ethanol production rate, it was possible to reach a high level of ethanol production: 85 g · liter −1 with 1.7 g · liter −1 glycerol in 30 h. We showed here that by using a metabolic model as a tool in prediction, it was possible to reduce glycerol production in a very high-performance ethanolic fermentation process.
- Published
- 2006
- Full Text
- View/download PDF
18. Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production
- Author
-
Carole Molina-Jouve, Gérard Goma, Stéphane E. Guillouet, Xavier Cameleyre, Jean-Louis Uribelarrea, A. S. Aldiguier, Sandrine Alfenore, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA), CRITT Bio-Industrie, Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
0106 biological sciences ,Glycerol ,Cell Survival ,Ethanol fermentation ,[SDV]Life Sciences [q-bio] ,Cell Culture Techniques ,Bioengineering ,Saccharomyces cerevisiae ,Ethanol tolerance ,7. Clean energy ,01 natural sciences ,03 medical and health sciences ,chemistry.chemical_compound ,Bioreactors ,010608 biotechnology ,Ethanol fuel ,Food science ,Ethanol metabolism ,Ethanol effect ,030304 developmental biology ,Cell Proliferation ,0303 health sciences ,Ethanol ,Chemistry ,Temperature ,General Medicine ,Kinetics ,Biochemistry ,Biofuel ,Temperature effect ,Fermentation ,Biotechnology ,Glycerol production - Abstract
The impact of ethanol and temperature on the dynamic behaviour of Saccharomyces cerevisiae in ethanol biofuel production was studied using an isothermal fed-batch process at five different temperatures. Fermentation parameters and kinetics were quantified. The best performances were found at 30 and 33 degrees C around 120 g l(-1) ethanol produced in 30 h with a slight benefit for growth at 30 degrees C and for ethanol production at 33 degrees C. Glycerol formation, enhanced with increasing temperatures, was coupled with growth for all fermentations; whereas, a decoupling phenomenon occurred at 36 and 39 degrees C pointing out a possible role of glycerol in yeast thermal protection.
- Published
- 2004
- Full Text
- View/download PDF
19. A novel technique to evaluate interactions between Saccharomyces Cerevisiae cell wall and mycotoxins : application to zearalenone
- Author
-
Alexandros, Yiannikouris, Laurent, Poughon, Xavier, Cameleyre, Claude-Gilles, Dussap, Jean, François, Gérard, Bertin, Jean-Pierre, Jouany, Unité de Recherches sur les Herbivores (URH), Institut National de la Recherche Agronomique (INRA), Centre Universitaire des Sciences et Techniques, Partenaires INRAE, Unité mixte de recherche biotechnologies bioprocédés, Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Alltech-France, and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV]Life Sciences [q-bio] ,Cell Membrane ,yeast cell wall ,Saccharomyces cerevisiae ,Mycotoxins ,Cell Fractionation ,Models, Biological ,mycotoxin ,modelling of adsorption curve ,Models, Chemical ,animal nutrition ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Zearalenone ,Computer Simulation ,[INFO]Computer Science [cs] ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Adsorption ,binder ,Subcellular Fractions - Abstract
International audience; Three models based on sigmoidal plotting were tested for their ability to describe zearalenone adsorption on Saccharomyces cerevisiae cell walls in vitro. All three models closely fitted the experimental data, but Hill's equation gave the most accurate parameters, and provided information on the physical and chemical mechanisms involved in the adsorption of mycotoxin on yeast cell walls.
- Published
- 2003
- Full Text
- View/download PDF
20. High yield chromatographic purification of enzymatically produced tyrosine fructosyl ester
- Author
-
Didier Combes, J. M. Taconnat, Xavier Cameleyre, and A. Guibert
- Subjects
Chymotrypsin ,Chromatography ,biology ,Fructose ,Transesterification ,Applied Microbiology and Biotechnology ,Catalysis ,chemistry.chemical_compound ,Adsorption ,chemistry ,Yield (chemistry) ,biology.protein ,medicine ,Organic chemistry ,Industrial and production engineering ,Biotechnology ,Activated carbon ,medicine.drug - Abstract
The synthesis of L-tyrosine fructosyl ester, from fructose and L-tyrosine methyl ester, was carried out by a transesterification reaction catalyzed by α-chymotrypsin in water without any organic cosolvent. The yield was optimized by regulating the pH of the reaction medium and a maximum yield of 63% was obtained.
- Published
- 1998
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.