1. Analysis of solar eruptions deflecting in the low corona: influence of the magnetic environment
- Author
-
Sahade, A., Vourlidas, A., and Mac Cormack, C.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Coronal mass ejections (CMEs) can exhibit non-radial evolution. The background magnetic field is considered the main driver for the trajectory deviation relative to the source region. The influence of the magnetic environment has been largely attributed to the gradient of the magnetic pressure. In this work, we propose a new approach to investigate the role of topology on CME deflection and to quantify and compare the action between the magnetic field gradient (`gradient' path) and the topology (`topological' path). We investigate 8 events simultaneously observed from Solar Orbiter, STEREO-A and SDO; and, with a new tracking technique, we reconstruct the 3D evolution of the eruptions. Then, we compare their propagation with the predictions from the two magnetic drivers. We find that the `topological' path describes the CME actual trajectory much better than the more traditional `gradient path'. Our results strongly indicate that the ambient topology may be the dominant driver for deflections in the low corona, and that presents a promising method to estimate the direction of propagation of CMEs early in their evolution., Comment: Accepted ApJ
- Published
- 2024