Back to Search Start Over

SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance Fields

Authors :
Robert Jarolim
Benoit Tremblay
Andrés Muñoz-Jaramillo
Kyriaki-Margarita Bintsi
Anna Jungbluth
Miraflor Santos
Angelos Vourlidas
James P. Mason
Sairam Sundaresan
Cooper Downs
Ronald M. Caplan
Source :
The Astrophysical Journal Letters, Vol 961, Iss 2, p L31 (2024)
Publication Year :
2024
Publisher :
IOP Publishing, 2024.

Abstract

To understand its evolution and the effects of its eruptive events, the Sun is permanently monitored by multiple satellite missions. The optically thin emission of the solar plasma and the limited number of viewpoints make it challenging to reconstruct the geometry and structure of the solar atmosphere; however, this information is the missing link to understand the Sun as it is: a 3D evolving star. We present a method that enables a complete 3D representation of the uppermost solar layer (corona) observed in extreme ultraviolet (EUV) light. We use a deep-learning approach for 3D scene representation that accounts for radiative transfer to map the entire solar atmosphere from three simultaneous observations. We demonstrate that our approach provides unprecedented reconstructions of the solar poles and directly enables height estimates of coronal structures, solar filaments, coronal hole profiles, and coronal mass ejections. We validate the approach using model-generated synthetic EUV images, finding that our method accurately captures the 3D geometry of the Sun even from a limited number of 32 ecliptic viewpoints (∣latitude∣ ≤ 7°). We quantify the uncertainties of our model using an ensemble approach that allows us to estimate the model performance in the absence of a ground truth. Our method enables a novel view of our closest star and is a breakthrough technology for the efficient use of multi-instrument data sets, which paves the way for future cluster missions.

Details

Language :
English
ISSN :
20418213 and 20418205
Volume :
961
Issue :
2
Database :
Directory of Open Access Journals
Journal :
The Astrophysical Journal Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.7f6847784534d7b9e393e2ddc58fbd3
Document Type :
article
Full Text :
https://doi.org/10.3847/2041-8213/ad12d2