María Díez-Campelo, Manja Meggendorfer, Stephan Hutter, John Barnard, Wencke Walter, Hetty E. Carraway, Claudia Haferlach, Vera Adema, Blanca Xicoy, Mar Mallo, Francesc Solé, Valeria Visconte, Sunisa Kongkiatkamon, Jaroslaw P. Maciejewski, Laura Palomo, Torsten Haferlach, and Thomas LaFramboise
The prevailing theory in del(5q) is that haploinsuffciency (HI) stemming from deletion and not simply LOH (loss of heterozygosity) is the culprit in clonal evolution. To date no haploinsufficient gene has been found to be the leukemogenic factor conveying growth advantage, but various other genes have been found to be important for phenotypic features or for propensity to acquire subsequent specific lesions. RPS14 is an example of such a gene, particularly in patients (pts) with isolated del(5q), responsible for macrocytic anemia and erythroid dysplasia and a propensity for acquisition of TP53 mutations. We hypothesized that RPS14 downmodulation and its consequences may be more common than del(5q) and it is frequent pathophysiologic feature in MDS. We first analyzed the genomic and expression profile of 170 pts with del(5q) and 825 diploid for 5q. We developed a new analytic pipeline to identify the most HI genes present in a large number of del(5q) pts. Genes within CDR (common deleted region) were classified as HI from the linear model fit if (i) clonality vs. gene expression slope from the isolated del(5q) was negative and FDR After applying model-based sparse clustering approach on all cohort, we obtained 7 clusters (Figure 1). As expected, del(5q) cases clustered together and showed consistent HI of 5q marker gene expression. Cluster-1 (n=146) included almost all del(5q) cases, except for 8 "mis-categorized" patients. It was characterized by low risk MDS (LR-MDS), presence of anemia/neutropenia and low mutational burden, with TP53 being the most commonly mutated gene and the only cluster with CSNK1A1 mutations. The remaining non-del(5q) patients were grouped in 6 clusters. Diploid cluster-2 (n=133) featured a normal karyotype, frequent ASXL1 and TET2 mutations, and profound down-modulation of RPS14 in all the patients included in the cluster (vs. other diploid pts). While the median RPS14 expression in cluster-1 (del(5q) cluster, with 50% adjusted clonality) was 7.29 (range 4.68-8.82 Log 2CPM), cluster-2 exhibited a median RPS14 expression of 6.12 Log 2CPM (range: 4.91-7.31 Log 2CPM). Clusters-3, -4, -5 (n=138, 90, 94, respectively) included most of the high risk MDS (HR-MDS). Cluster-3 was enriched for thrombocytopenia and SRSF2 mutations; cluster-4 for anemia, thrombocytopenia and ASXL1 and SRSF2 mutations. Cluster-5 was characterized by pancytopenia and frequent ASXL1 mutations and CK (complex karyotype). Cluster-6 (n=66) and -7 (n=233) contained the majority of non-del(5q) LR-MDS. When we analyzed the RPS14 expression in these clusters based on the RPS14 expression in cluster 2 we found 13% (n=18), 21% (n=19), 9% (n=8), 14% (n=9), 7% (n=16) of low RPS14 expressors in cluster-3, -4, -5, -6, -7, respectively. Cluster-2 showed a similar percentage of patients with anemia, and thrombocytopenia vs. Cluster-1 (69 vs. 50%, 23 vs. 30%; respectively). The mutational profile included a higher frequency of mutations for SRSF2 (29 vs. 0%), NRAS/KRAS (22% vs. 4%), ASXL1 (40 vs. 15%), TET2 (35 vs. 15%), and JAK2 (17 vs. 6%). These results indicate a more proliferative molecular spectrum of RPS14 downregulated cluster-2 than del(5q)-cluster-1, but RPS14 downmodulation did not lead to acquisition of TP53 mutations (4% vs. 76%). Considering all non-del(5q) RPS14 low expressors (n=186), only 3% of the cases had TP53 mutations. Since TP53 and CSNK1A1 mutations were characteristic of cluster-1 we studied interactions with HI RPS14. HI RPS14 in del(5q) and diploid low expressors showed a decreased expression of CDKN1A (P In conclusion, RPS14 expression defect is more widespread than del(5q) in MDS. However, only del(5q) RPS14 HI pts are prone to harbor TP53 and CSNK1A1 mutations; a group of diploid pts with low RPS14 and CSNK1A1 expressions might mimic some del5q features and could potentially respond to similar treatments. Figure 1 Figure 1. Disclosures Diez-Campelo: Takeda Oncology: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Carraway: AbbVie: Other: Independent review committee; Jazz: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Other: Independent review committee; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Agios: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astex: Other: Independent review committee; Stemline: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene, a Bristol Myers Squibb company: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Maciejewski: Bristol Myers Squibb/Celgene: Consultancy; Regeneron: Consultancy; Novartis: Consultancy; Alexion: Consultancy.