Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Jāmiʻat Muḥammad al-Khāmis, García Planas, María Isabel, Souidi, El Mamoun, Um, Laurence Emilie, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Jāmiʻat Muḥammad al-Khāmis, García Planas, María Isabel, Souidi, El Mamoun, and Um, Laurence Emilie
Cotutela Universitat Politècnica de Catalunya i Université Mohammed V-Agdal, Information is such a valuable good of our time. Given that the transmission of information has always been subject to precision problems, knowing the obstacles existing between the transmitter and the receiver, eventual disruptions can happen anywhere in between, the physical means, channels involved with the exchange are never perfect and they are subject to errors that might result in loss of important data. Error correcting codes are a key element in the transmission and storage of digital information. In this thesis we study the possibility to redefine and improve properties of convolutional codes in terms of coding and decoding, with the help of the systems and control theory. For that matter, in chapter 1, we recall notions on coding theory, more specifically, on linear codes, both block and convolutional, redefining the convolutional codes as submodules of the F^n_{q} which is our main workspace. And we go through the prerequisites involved in the process of encoding and decoding, both for block and convolutional codes. And in order to approach them with tools of the systems theory, in chapter 2, we give the equivalence of the generating matrix in the form of a realization (A,B,C,D) of an input-output system. Then, we studied the concatenation because it has been proved to improve the transmission. In this work, we consider two big families of concatenation: serial concatenation, and parallel concatenation and two other models of concatenation called systematic serial concatenation and parallel interleaver concatenation. In chapter 3, we study control properties for each case. Nevertheless, we focus on the property of output-observability, and conditions to obtain it, particularly an easy iterative test is presented in order to discuss whether a code is output-observable. This test consists in calculating certain ranks of block matrices constructed from the matrices A, B, C, D. The output-observability property is very beneficial for the decoding as discusse, La información es un valioso bien de nuestro tiempo. Dado que la transmisión de la información siempre ha estado sujeta a problemas de precisión, conociendo los obstáculos existentes entre el transmisor y el receptor, las interrupciones eventuales pueden ocurrir en cualquier lugar en el medio, el medio físico, canal involucrado con el cambio nunca es perfecto y está sujeto a errores que podrán dar como resultado una pérdida de datos importantes. Dado que los códigos correctores de errores son un elemento clave en la transmisión y almacenamiento de información digital, por eso un más fácil y mejor uso abre interesantes oportunidades en la regulación de la transmisión de la información, el cual es una ventaja que ofrece la teoría de sistemas lineales y el álgebra lineal a la definición de los códigos de convolución. Esta es la razón por la que en esta tesis, seguimos esa perspectiva para estudiar la posibilidad de redefinir y mejorar las propiedades de los códigos de convolución en base a la codificación y descodificación, con la ayuda de los sistemas y la teoría de control. En este sentido, en el capítulo 1, recordamos nociones sobre la teoría de códigos, más específicamente, sobre los códigos lineales, tanto de bloques como de convolución, se redefinen los códigos convolucionales como submódulos de Fnq que es nuestro espacio principal de trabajo. Y damos un repaso a los requisitos previos necesarios en el proceso de codificación y descodificación, tanto para los códigos de bloque como los códigos convolucionales. Y con el fin de aproximarnos a los códigos convolucionales con las herramientas de la teoría de sistemas, en el capítulo 2, damos la equivalencia de la matriz generatriz en función de una realización (A;B;C;D) de un sistema de entrada-salida. A continuación, se estudia la concatenación porque es conocido que mejora la transmisión. En este trabajo, se consideran dos grandes familias de concatenación: la concatenación en serie, y la concatenación en paralelo, L'information est un bien de notre époque dont l'importance n'est plus à démontrer. Etant donné que la transmission de l'information a toujours été soumise à des problèmes de précisions, dûs aux obstacles existant entre le transmetteur and le récepteur, d'éventuelles perturbations peuvent arriver n'importe où, entre les canaux physiques, faisant partie du processus d'échange qui n'est jamais parfait et ils peuvent toujours être affectés par des erreurs créant d'importantes pertes d'information. Les codes correcteurs d'erreurs sont un élément clé dans la transmission et la conservation de l'information numérique. Etant donné que les codes correcteurs d'erreurs sont un élément clé dans la transmission et la conservation de l'information digitale, ainsi un meilleur et plus simple usage ouvre des opportunités plus intéressantes dans la régulation de la transmission de l'information, qui est l'avantage que la définition des codes convolutifs suivant la théorie des systèmes linéaires apporte, avec le matériel de l'algèbre linéaire. C'est pour cette raison que dans cette thèse, nous suivons cette perspective pour étudier la perspective d'étudier la possibilité de redéfinir et d'améliorer les propriétés des codes convolutifs en termes de codage et de décodage, grâce aux outils de la théorie des systèmes et de contrôle. A cet effet, dans le chapitre 1, nous rappelons des notions sur la théorie des codes linéaires, les codes en bloc ainsi que les codes convolutifs, redéfinissant les codes convolutifs comme des sous-modules de Fnq qui est notre principal espace de travail. Et c'est ainsi que nous invoquons tous les prérequis nécessaires pour le processus de codage et de décodage, pour ce qui est des codes en bloc, et des codes convolutifs. Et dans le but d'approcher ces derniers grâce aux outils de la théorie des systèmes, dans le chapitre 2, nous donnons l'équivalence de la matrice génératrice sous la forme d'une réalisation (A;B;C;D) d'un un système inputoutput. Ensuite, nou, Postprint (published version)