Back to Search Start Over

Effective computation of base points of two-dimensional ideals

Authors :
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
Álvarez Montaner, Josep
Alberich Carramiñana, Maria
Blanco Fernández, Guillem
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
Álvarez Montaner, Josep
Alberich Carramiñana, Maria
Blanco Fernández, Guillem
Publication Year :
2015

Abstract

This works focus on computational aspects of the theory of singularities of plane algebraic curves. We show how to use the Puiseux factorization of a curve, computed through the Newton-Puiseux algorithm, to study the equisingularity type of a curve. We present a novel version of the Newton-Puiseux algorithm that can compute all the Puiseux factorization of any arbitrary polynomial, removing the restriction of reduced inputs. Next, we introduce the theory of infinitely near points and the concept of base points of an ideal. Finally, we develop a novel algorithm that, using our novel version of the Newton-Puiseux algorithm, computes the weighted cluster of base points of any two dimensional ideal from any set of generators.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn929953991
Document Type :
Electronic Resource