Tuan-Tu Nguyen, Bruno Delobel, Maxime Berthe, Benoît Fleutot, Arnaud Demortière, Charles Delacourt, Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Technocentre Renault [Guyancourt], RENAULT, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Plateforme de Caractérisation Multi-Physiques - IEMN (PCMP - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The authors would like to acknowledge French National Association for Research and Technology (ANRT) for partially supporting the funding of this research work. T.T. Nguyen was supported by Renault Group for his PhD Project. This work has been supported by the IEMN-PCMP-PCP platform and by the RENATECH network., PCMP PCP, Renatech Network, Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN], Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
Physics-based models of the Li-ion battery are promising to decipher and quantify the electrode limitations, thereby providing valuable insights for choosing the optimal electrode design for a specific application. However, to obtain relevant results from the models, a reliable set of input parameters is required. This work presents a combined experimental/modeling approach relying on the Newman pseudo-2D model for a complete characterization of a set of LiNi0.5Mn0.3Co0.2O2 electrodes. Intrinsic properties of the active materials are determined and validated using low-loading electrodes having negligible porous-electrode limitations. Then, high-energy-density electrode properties are characterized using appropriate experimental methods, which are widely reported in the literature. In the second part of this series of papers, parameters obtained from this part serve as input parameters in the Newman pseudo-2D model as well as in its extension in order to simulate the rate capability during discharge of the aforementioned set of high-energy-density electrodes. List of symbols a i m i 2 / m PE 3 interfacial surface area of phase i c s , surf mol m − 3 concentration at the surface of the AM particle c s , max mol m − 3 maximum concentration of intercalated Li in AM particle c s mol m − 3 solid-phase Li concentration within the AM particle c ¯ s mol m − 3 local volume-averaged solid Li concentration of AM phase within the PA c mol m − 3 salt concentration in a binary electrolyte d 50 μ m median diameter of AM particles D m 2 s − 1 bulk diffusion coefficient of the liquid phase D s m 2 s − 1 diffusion coefficient of Li in the AM particles F C mol − 1 Faraday’s constant i coexisting phase presented in the PE i n 0 A m − 2 exchange current density i Li 0 A m − 2 exchange current density at the Li foil I app A / m CC 2 discharge current density j n mol / m AM 2 · s pore-wall flux across the sandwich k 0 mol m 2 · s · mol m − 3 1.5 − 1 reaction rate constant of the AM k 0 , Li mol m 2 · s · mol m − 3 0.5 − 1 reaction rate constant of Li foil L el μ m PE thickness L sep μ m separator thickness Q th Ah kg − 1 electrode theoretical capacity R J mol · K − 1 ideal gas constant r μ m radial dimension along the AM particle T K absolute temperature t s time t + 0 transference number of Li+ in the electrolyte with respect to the solvent velocity U V equilibrium potential of the AM Δ V V voltage drop between the two inner contacts in the μ4-probe experiment x μ m dimension across the sandwich x 0 initial stoichiometry Greek Symbols α thermodynamic factor β charge transfer coefficient ε m elyte 3 / m PE 3 PE porosity ε sep m elyte 3 / m sep 3 separator porosity κ eff S m − 1 effective ionic conductivity of the liquid phase ρ el g cm − 3 electrode density σ eff S m − 1 effective electronic conductivity of the solid phase of the electrode τ Br tortuosity factor by Bruggeman τ e electrode tortuosity factor τ sep tortuosity factor of the separator Φ 1 , Li V electric potential at Li foil Φ i V electric potential of phase i