Back to Search Start Over

Resolving the Discrepancy in Tortuosity Determination for Battery Porous Electrodes Via a Numerical Approach

Authors :
Tuan-Tu Nguyen
Arnaud Demortière
Charles Delacourt
Bruno Delobel
Benoit Fleutot
Samuel J. Cooper
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS)
Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Réseau sur le stockage électrochimique de l'énergie (RS2E)
Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
ECS Meeting Abstracts, ECS Meeting Abstracts, 2020, MA2020-01 (49), pp.2724-2724. ⟨10.1149/MA2020-01492724mtgabs⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

The tortuosity factor of porous electrode microstructure is a crucial input parameter for numerical models of batteries as it strongly influences the electrode performance. As such, it is very important to have a method to determine this parameter accurately, based on a definition that reflects the design of the cell. Various experimental methods have been developed for either directly measuring or indirectly inferring the tortuosity factor; however, numerical approaches, based on 3D image data, are now gaining interest in the battery community, due to the advances in nanoscale tomographic imaging methods. The standard definition of the tortuosity factor solves the Fick diffusion equation at steady-state, i.e., between two parallel constant-value boundaries. Although this approach has been widely used for porous materials, including both electronic insulators (e.g., a battery separator), and electronic conductors (e.g., battery porous electrodes), it may be the case that the definition needs to be adjusted depending on the scenario being observed. In this study, we intend to give an insight into the appropriate way to determine the tortuosity factor of battery porous electrodes and the impact of various tortuosity determination methods is investigated. An additional module that relies on the symmetric cell method [1] [2] was implemented in the TauFactor software package [3] to compare with the already-implemented diffusion-based method [4]. This symmetric cell method refers to the measurement of the ionic current distribution inside the pores using AC impedance based on a symmetric cell setup. Figure 1 shows the workflow for tortuosity determination applied in this study. The integration of this module in TauFactor might be interesting for tortuosity determination at the microscale since it is the same method as at macroscopic scale observed in various experimental approaches. Figure 1 . Illustration of the workflow for tortuosity determination applied in this work. The module recently implemented in TauFactor allows calculation based directly on tomographic data in symmetric cell configuration, and generates a simulated impedance spectrum. A macroscopic model such as TLM or Newman’s model is used to extract the tortuosity value of the electrode. References: [1] Landesfeind, J. et al.; J. Electrochem. Soc. 2016, 163 (7), A1373–A1387 [2] Malifarge, S. et al.; J. Electrochem. Soc. 2017, 164 (11), E3329–E3334 [3] Cooper, S. J. et al.; SoftwareX 2016, 5, 203–210 [4] Cooper, S. J. et al.; Electrochimica Acta 251 (2017) 681–689 [5] Pouraghajan, F. et al.; J. Electrochem. Soc. 2018, 165 Figure 1

Details

Language :
English
ISSN :
10918213 and 21512043
Database :
OpenAIRE
Journal :
ECS Meeting Abstracts, ECS Meeting Abstracts, 2020, MA2020-01 (49), pp.2724-2724. ⟨10.1149/MA2020-01492724mtgabs⟩
Accession number :
edsair.doi.dedup.....1545bc8bc12c0f6213b2a04931d4a972
Full Text :
https://doi.org/10.1149/MA2020-01492724mtgabs⟩