Bosonic atoms confined in optical lattices are described by the Bose-Hubbard model and can exist in two different phases, Mott insulator or superfluid, depending on the strength of the system parameters, such as the on-site interaction between particles and the hopping parameter. Differently from classical phase transitions, the Mott-insulatorsuperfluid transition can happen even at zero temperature, driven by quantum fluctuations, thus characterizing a quantum phase transition. For the homogeneous system, we can approximate the particle excitations as a mean-field over time, thus providing a local Hamiltonian, which makes possible the evaluation of physical properties from a single lattice site. From the Landau theory of second-order phase transitions, it is possible to expand the thermodynamic potential in a power series in terms of the order parameter, giving rise to the Mott-insulator-superfluid phase diagram. As the condensate density goes from a finite value to a vanishing one when the system transits from superfluid to a Mott insulator, it can be considered as the order parameter of the system. In the vicinity of the phase boundary, it is possible to consider the hopping term as a perturbation, since it contains the order parameter. Thence, one can apply perturbation theory in order to calculate important physical quantities, such as the condensate density. However, due to degeneracies that happen to exist between every two adjacent Mott lobes, nondegenerate perturbation theory fails to give meaningful results for the condensate density: it predicts a phase transition due to the vanishing of the order parameter in a point of the phase diagram where no transition occurs. Motivated by such a misleading calculation, we develop two different degenerate perturbative methods to solve the degeneracy-related problems. Firstly, we develop a degenerate perturbative method based on Brillouin-Wigner perturbation theory to tackle the zero-temperature case. Afterwards, we develop another degenerate perturbative method based on a projection operator formalism to deal with the finite-temperature regime. Both methods have the common feature of separating the Hilbert subspace where the degeneracies are contained in from the complementary one. Therefore, such a separation of the Hilbert subspaces fixes the degeneracy-related problems and provides us a framework to obtain physically consistent results for the condensate density near the phase boundary. Moreover, we study the one-dimensional repulsively interacting Bose gas under harmonic confinement, with special attention to the asymptotic behavior of the momentum distribution, which is an universal k4 decay characterized by the Tan´s contact. The latter constitutes a direct signature of the short-range correlations in such an interacting system and provides valuable insights about the role of the interparticle interactions. From the known solutions of the system composed of two particles, we are able to acquire important knowledge about the manifestation of the interaction, e.g., the cusp condition that implies the vanishing of the many-body wave function whenever two particles meet. Then, we investigate the system constituted of N interacting particles in the strongly interacting limit, also known as Tonks-Girardeau gas. In such a regime, the strong interparticle interaction makes the bosons behave similarly to the ideal Fermi gas, an effect known as fermionization,. Because of the difficulty in analytically solving the system for N particles at finite interaction, the Tonks-Girardeau regime provides, through the fermionization of the bosons, a favorable scenario to probe the Tan´s contact. Therefore, within such a regime, we are able to provide an analytical formula for the Tan´s contact in terms of the single-particle orbitals of the harmonic oscillator. Furthermore, we analyze the scaling properties of the Tan´s contact in terms of the number of particles N in the high-temperature regime as well as in the strongly interacting regime. Finally, we compare our analytical calculations of the Tan´s contact to quantum Monte Carlo simulations and discuss some fundamental differences between the canonical and the grand-canonical ensembles. Átomos bosônicos confinados em redes ópticas são descritos pelo modelo de Bose-Hubbard e podem existir em duas diferentes fases, isolante de Mott ou superfluido, dependendo da força dos parâmetros do sistema, tais como a interação local entre partículas e o parâmetro de salto. Diferentemente das transições de fase clássicas, a transição entre isolante de Mott e superfluido pode ocorrer mesmo a temperatura zero, impulsionada por flutuações quânticas, caracterizando uma transição de fase quântica. Para o sistema homogêneo, podemos aproximar as excitações de partículas a um campo médio ao longo do tempo, fornecendo um Hamiltoniano local, o que torna possível a avaliação de propriedades físicas a partir de um único sítio da rede. A partir da teoria de Landau de transições de fase de segunda ordem, é possível expandir o potencial termodinâmico em uma série de potências em termos do parâmetro de order, dando origem ao diagrama de fase. Como a densidade de condensado passa de um valor finito para um valor nulo quando o sistema transita de superfluido para isolante de Mott, este pode ser considerado como sendo o parâmetro de ordem do sistema. Nas proximidades da fronteira de fase, é possível considerar o termo de salto como uma perturbação, uma vez que este contém o parâmetro de ordem. Daí, pode-se aplicar teoria de perturbação para calcular quantidades físicas importantes, como a densidade de condensado. No entanto, devido a degenerescências que existem entre dois lóbulos de Mott adjacentes, teoria de perturbação não degenerada falha em fornecer resultados significativos para a densidade de condensado: esta prevê uma transição de fase devido ao desaparecimento do parâmetro de order em um ponto do diagrama de fase onde nenhuma transição ocorre. Motivados por esse cálculo enganoso, desenvolvemos dois métodos perturbativos degenerados diferentes para resolver os problemas relacionados às degenerescências. Em primeiro lugar, desenvolvemos um método perturbativo degenerado baseado em teoria de perturbação de Brillouin-Wigner para solucionar o sistema a temperatura zero. Posteriormente, desenvolvemos outro método perturbativo degenerado baseado em um formalismo de operadores de projeção para lidar com o regime a temperatura finita. Ambos os métodos têm a característica comum de separar o subespaço de Hilbert onde as degenerescências estão contidas de seu complementar. Portanto, essa separação dos subespaços de Hilbert corrige os problemas relacionados às degenerescências e nos fornece uma estrutura para obter resultados fisicamente consistentes para a densidade de condensado próximo à fronteira da fase. Além disso, estudamos o gás de Bose unidimensional com interação repulsiva entre partículas sob confinamento harmônico, com especial atenção ao comportamento assintótico da distribuição de momento, que é um decaimento universal de k4 caracterizado pelo contato de Tan. Este último constitui uma assinatura direta das correlações de curto alcance em tal sistema interagente e fornece informações valiosas sobre o papel das interações entre partículas. A partir das conhecidas soluções do sistema composto de duas partículas, somos capazes de adquirir conhecimentos importantes sobre a manifestação da interação, e.g., a condição de cúspide que implica no desaparecimento da função de onda de muitos corpos sempre que duas partículas se encontram. Em seguida, investigamos o sistema constituído de N partículas fortemente interagentes, também conhecido como gás de Tonks-Girardeau. Nesse regime, a forte interação entre partículas faz com que os bósons se comportem de maneira semelhante ao gás ideal de Fermi, um efeito conhecido como fermionização. Devido à dificuldade em resolver analiticamente o sistema com N partículas com interação finita, o regime de Tonks-Girardeau fornece, através da fermionização dos bósons, um cenário favorável para o estudo do contato de Tan. Portanto, dentro de tal regime, somos capazes de fornecer uma fórmula analítica para o contato do Tan em termos dos orbitais de uma única partícula do oscilador harmônico. Além disso, analisamos as propriedades de escalonamento do contato do Tan em termos do número de partículas N nos regimes de altas temperaturas e fortes interações. Finalmente, comparamos nossos cálculos analíticos do contato de Tan a simulações de Monte Carlo quântico e discutimos algumas diferenças fundamentais entre os conjuntos canônico e macrocanônico.