Hiroshi Ohshima, Claude Gharib, Guillemette Gauquelin-Koch, Stéphane Blanc, Sylvie Normand, Audrey Bergouignan, Dale A. Schoeller, Timothy C. Shriver, Michel Desage, Martine Laville, Yvon Le Maho, Département Ecologie, Physiologie et Ethologie (DEPE-IPHC), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Department of Nutritional Sciences, University of Wisconsin-Madison, Centre de recherche en nutrition humaine de Lyon, Faculté de médecine Laennec - Lyon, Centre National d'Études Spatiales [Toulouse] (CNES), Tsukuba Space Center (TKSC), Japan Aerospace Exploration Agency [Tokyo] (JAXA), Laboratoire de physiologie de l'environnement, Faculté de médecine Grange Blanche, and Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
Objectives: Changes in the way dietary fat is metabolized can be considered causative in obesity. The role of sedentary behavior in this defect has not been determined. We hypothesized that physical inactivity partitions dietary fats toward storage and that a resistance exercise training program mitigates storage. Design: We used bed rest, with randomization to resistance training, as a model of physical inactivity. Setting: The trial took place at the Space Clinic (Toulouse, France). Participants: A total of 18 healthy male volunteers, of mean age ± standard deviation 32.6 ± 4.0 y and body mass index 23.6 ± 0.7 kg/m2, were enrolled. Interventions: An initial 15 d of baseline data collection were followed by 3 mo of strict bed-rest alone (control group, n = 9) or with the addition of supine resistance exercise training every 3 d (exercise group, n = 9). Outcome measures: Oxidation of labeled [d31]palmitate (the main saturated fatty acid of human diet) and [1-13C]oleate (the main monounsaturated fatty acid), body composition, net substrate use, and plasma hormones and metabolites were measured. Results: Between-group comparisons showed that exercise training did not affect oxidation of both oleate (mean difference 5.6%; 95% confidence interval [95% CI], −3.3% to 14.5%; p = 0.20) and palmitate (mean difference −0.2%; 95% CI, −4.1% to 3.6%; p = 0.89). Within-group comparisons, however, showed that inactivity changed oxidation of palmitate in the control group by −11.0% (95% CI, −19.0% to −2.9%; p = 0.01) and in the exercise group by −11.3% (95% CI, −18.4% to −4.2%; p = 0.008). In contrast, bed rest did not significantly affect oleate oxidation within groups. In the control group, the mean difference in oleate oxidation was 3.2% (95% CI, −4.2% to 10.5%; p = 0.34) and 6.8% (95% CI, −1.2% to 14.7%; p = 0.08) in the exercise group. Conclusions: Independent of changes in energy balance (intake and/or output), physical inactivity decreased the oxidation of saturated but not monounsaturated dietary fat. The effect is apparently not compensated by resistance exercise training. These results suggest that Mediterranean diets should be recommended in sedentary subjects and recumbent patients., Editorial Commentary Background: Obesity is an important contributor to the burden of chronic diseases, particularly type II diabetes, cardiovascular disease, hypertension, and stroke. Being inactive is a risk factor for all of these conditions. However, the physiological effects of inactivity are not well understood. In this trial, supported by the European Space Agency, a group of researchers aimed to further understand the effects of physical inactivity on the way that fat from the diet is metabolized (i.e., broken down to generate energy). 18 healthy male volunteers were randomized into two groups, both of whom underwent 90 days of bed rest, aiming to mimic sedentary behavior. One group also received an exercise training program during the 90 days' bed rest. The researchers examined to what extent two different types of fatty acids common in the diet were metabolized over the duration of the trial: oleate (monounsaturated fat) and palmitate (saturated fat). As secondary objectives of the study, body weight, water, fat, and energy expenditure were also examined in the participants. What this trial shows: The researchers did not see any statistically significant changes between the groups—that is, participants receiving bed rest, and those receiving bed rest plus exercise training—for any of the primary or secondary outcomes, except for resting metabolic rate, which was higher in the exercise group. However, they did see physiologically relevant changes in fat metabolism of one of the fatty acids, palmitate, over the course of the trial within both groups studied. Although metabolism of oleate (monounsaturated fat) did not show significant changes over the course of the trial, metabolism of palmitate (saturated fat) dropped by nearly 10% in both groups (bed rest, and bed rest plus exercise). Strengths and limitations: The study design was appropriate to the questions being posed, and the techniques for examining fat metabolism were relevant. Although the number of participants was very small, this problem is true of many such studies due to the cost and complexity of the interventions. The model for inactivity used in this trial—90 days' bed rest—is very extreme. Very few studies of this type have been performed, with most of the evidence relating to activity and fat handling coming from training studies in otherwise sedentary people. Contribution to the evidence: It is already known that physical activity has numerous health benefits, including the prevention of obesity. This trial provides data showing that inactivity lowers the ability to metabolize fat, specifically saturated fat, from the diet, which would therefore be more likely to be stored in the body.