33 results on '"Taedoumg H"'
Search Results
2. The number of tree species on Earth
- Author
-
Cazzolla Gatti, R., Reich, P., Gamarra, J., Crowther, T., Hui, C., Morera, A., Bastin, J.-F., de-Miguel, S., Nabuurs, G.-J., Svenning, J.-C., Serra-Diaz, J., Merow, C., Enquist, B., Kamenetsky, M., Lee, J., Zhu, J., Fang, J., Jacobs, D., Pijanowski, B., Banerjee, A., Giaquinto, R., Alberti, G., Almeyda Zambrano, A., Alvarez-Davila, E., Araujo-Murakami, A., Avitabile, V., Aymard, G., Balazy, R., Baraloto, C., Barroso, J., Bastian, M., Birnbaum, P., Bitariho, R., Bogaert, J., Bongers, F., Bouriaud, O., Brancalion, P., Brearley, F., Broadbent, E., Bussotti, F., Castro da Silva, W., César, R., Češljar, G., Chama Moscoso, V., Chen, H., Cienciala, E., Clark, C., Coomes, D., Dayanandan, S., Decuyper, M., Dee, L., Del Aguila Pasquel, J., Derroire, G., Djuikouo, M., Van Do, T., Dolezal, J., Đorđević, I., Engel, J., Fayle, T., Feldpausch, T., Fridman, J., Harris, D., Hemp, A., Hengeveld, G., Herault, B., Herold, M., Ibanez, T., Jagodzinski, A., Jaroszewicz, B., Jeffery, K., Johannsen, V., Jucker, T., Kangur, A., Karminov, V., Kartawinata, K., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Khare, P., Kileen, T., Kim, H., Korjus, H., Kumar, A., Laarmann, D., Labrière, N., Lang, M., Lewis, S., Lukina, N., Maitner, B., Malhi, Y., Marshall, A., Martynenko, O., Monteagudo Mendoza, A., Ontikov, P., Ortiz-Malavasi, E., Pallqui Camacho, N., Paquette, A., Park, M., Parthasarathy, N., Peri, P., Petronelli, P., Pfautsch, S., Phillips, O., Picard, N., Piotto, D., Poorter, L., Poulsen, J., Pretzsch, H., Ramírez-Angulo, H., Restrepo Correa, Z., Rodeghiero, M., Rojas Gonzáles, R., Rolim, S., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Shchepashchenko, D., Scherer-Lorenzen, M., Šebeň, V., Silveira, M., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svoboda, M., Taedoumg, H., Tchebakova, N., Terborgh, J., Tikhonova, E., Torres-Lezama, A., van der Plas, F., Vásquez, R., Viana, H., Vibrans, A., Vilanova, E., Vos, V., Wang, H.-F., Westerlund, B., White, L., Wiser, S., Zawiła-Niedźwiecki, T., Zemagho, L., Zhu, Z., Zo-Bi, I., Liang, J., Cazzolla Gatti, R., Reich, P., Gamarra, J., Crowther, T., Hui, C., Morera, A., Bastin, J.-F., de-Miguel, S., Nabuurs, G.-J., Svenning, J.-C., Serra-Diaz, J., Merow, C., Enquist, B., Kamenetsky, M., Lee, J., Zhu, J., Fang, J., Jacobs, D., Pijanowski, B., Banerjee, A., Giaquinto, R., Alberti, G., Almeyda Zambrano, A., Alvarez-Davila, E., Araujo-Murakami, A., Avitabile, V., Aymard, G., Balazy, R., Baraloto, C., Barroso, J., Bastian, M., Birnbaum, P., Bitariho, R., Bogaert, J., Bongers, F., Bouriaud, O., Brancalion, P., Brearley, F., Broadbent, E., Bussotti, F., Castro da Silva, W., César, R., Češljar, G., Chama Moscoso, V., Chen, H., Cienciala, E., Clark, C., Coomes, D., Dayanandan, S., Decuyper, M., Dee, L., Del Aguila Pasquel, J., Derroire, G., Djuikouo, M., Van Do, T., Dolezal, J., Đorđević, I., Engel, J., Fayle, T., Feldpausch, T., Fridman, J., Harris, D., Hemp, A., Hengeveld, G., Herault, B., Herold, M., Ibanez, T., Jagodzinski, A., Jaroszewicz, B., Jeffery, K., Johannsen, V., Jucker, T., Kangur, A., Karminov, V., Kartawinata, K., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Khare, P., Kileen, T., Kim, H., Korjus, H., Kumar, A., Laarmann, D., Labrière, N., Lang, M., Lewis, S., Lukina, N., Maitner, B., Malhi, Y., Marshall, A., Martynenko, O., Monteagudo Mendoza, A., Ontikov, P., Ortiz-Malavasi, E., Pallqui Camacho, N., Paquette, A., Park, M., Parthasarathy, N., Peri, P., Petronelli, P., Pfautsch, S., Phillips, O., Picard, N., Piotto, D., Poorter, L., Poulsen, J., Pretzsch, H., Ramírez-Angulo, H., Restrepo Correa, Z., Rodeghiero, M., Rojas Gonzáles, R., Rolim, S., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Shchepashchenko, D., Scherer-Lorenzen, M., Šebeň, V., Silveira, M., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svoboda, M., Taedoumg, H., Tchebakova, N., Terborgh, J., Tikhonova, E., Torres-Lezama, A., van der Plas, F., Vásquez, R., Viana, H., Vibrans, A., Vilanova, E., Vos, V., Wang, H.-F., Westerlund, B., White, L., Wiser, S., Zawiła-Niedźwiecki, T., Zemagho, L., Zhu, Z., Zo-Bi, I., and Liang, J.
- Abstract
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.
- Published
- 2022
3. What controls tropical forest architecture? Testing environmental, structural and floristic drivers
- Author
-
Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bradford, M., Brienen, R. J. W., Davies, S., Drescher, M., Higuchi, N., Hilbert, D. W., Hladik, A., Iida, Y., Salim, K. Abu, Kassim, A. R., King, D. A., Lopez-Gonzalez, G., Metcalfe, D., Nilus, R., Peh, K. S.-H., Reitsma, J. M., Sonké, B., Taedoumg, H., Tan, S., White, L., Wöll, H., and Lewis, S. L.
- Published
- 2012
- Full Text
- View/download PDF
4. High aboveground carbon stock of African tropical montane forest
- Author
-
Cuni-Sanchez, A, Sullivan, MJP, Platts, PJ, Lewis, SL, Marchant, R, Imani, G, Hubau, W, Abiem, I, Adhikari, H, Albrecht, T, Altman, J, Amani, C, Aneseyee, AB, Avitabile, V, Banin, L, Batumike, R, Bauters, M, Beeckman, H, Begne, S, Bennett, AC, Bitariho, R, Boeckx, P, Bogaert, J, Bräuning, A, Bulonvu, F, Burgess, F, Calders, K, Chapman, C, Chapman, H, Comiskey, J, de Haulleville, T, Decuyper, M, DeVries, B, Dolezal, J, Droissart, V, Ewango, C, Feyera, S, Gebrekirstos, A, Gereau, R, Gilpin, M, Hakizimana, D, Hall, J, Hamilton, A, Hardy, O, Hart, T, Heiskanen, J, Hemp, A, Herold, M, Hiltner, U, Horak, D, Kamdem, M, Kayijamahe, C, Kenfack, D, Kinyanjui, MJ, Klein, J, Lisingo, J, Lovett, J, Lung, M, Makana, J-R, Malhi, Y, Marshall, A, Martin, EH, Mitchard, ETA, Morel, A, Mukendi, JT, Muller, T, Nchu, F, Nyirambangutse, B, Okello, J, Peh, KS-H, Pellikka, P, Phillips, OL, Plumptre, A, Qie, L, Rovero, F, Sainge, MN, Schmitt, CB, Sedlacek, O, Ngute, ASK, Sheil, D, Sheleme, D, Simegn, TY, Simo-Droissart, M, Sonké, B, Soromessa, T, Sunderland, T, Svoboda, M, Taedoumg, H, Taplin, J, Taylor, D, Thomas, SC, Timberlake, J, Tuagben, D, Umunay, P, Uzabaho, E, Verbeeck, H, Vleminckx, J, Wallin, G, Wheeler, C, Willcock, S, Woods, JT, and Zibera, E
- Abstract
Tropical forests store 40–50 per cent of terrestrial vegetation carbon 1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests 2. Owing to climatic and soil changes with increasing elevation 3, AGC stocks are lower in tropical montane forests compared with lowland forests 2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network 4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane 2,5,6 and lowland 7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa 8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse 9,10 and carbon-rich ecosystems.
- Published
- 2021
5. Long-term thermal sensitivity of Earth's tropical forests
- Author
-
Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E.N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R.V., Baker, T.R., Brienen, R.J.W., Feldpausch, T.R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.-I., Alexiades, M.N., Almeida, E.C., de Oliveira, E.A., Dávila, E.Á., Loayza, P.A., Andrade, A., Vieira, S.A., Aragão, L.E.O.C., Araujo-Murakami, A., Arets, E.J.M.M., Arroyo, L., Ashton, P., Aymard C, G., Baccaro, F.B., Banin, L.F., Baraloto, C., Camargo, P.B., Barlow, J., Barroso, J., Bastin, J.-F., Batterman, S.A., Beeckman, H., Begne, S.K., Bennett, A.C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F.Q., Brncic, T., Brown, F., Burban, B., Camargo, J.L., Castro, W., Céron, C., Ribeiro, S.C., Moscoso, V.C., Chave, J., Chezeaux, E., Clark, C.J., de Souza, F.C., Collins, M., Comiskey, J.A., Valverde, F.C., Medina, M.C., da Costa, L., Dančák, M., Dargie, G.C., Davies, S., Cardozo, N.D., de Haulleville, T., de Medeiros, M.B., Del Aguila Pasquel, J., Derroire, G., Di Fiore, A., Doucet, J.-L., Dourdain, A., Droissant, V., Duque, L.F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G.F., Foli, E., Ford, A., Gilpin, M., Hall, J.S., Hamer, K.C., Hamilton, A.C., Harris, D.J., Hart, T.B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Coronado, E.H., Huamantupa-Chuquimaco, I., Huasco, W.H., Jeffery, K.J., Jimenez-Rojas, E., Kalamandeen, M., Djuikouo, M.N.K., Kearsley, E., Umetsu, R.K., Kho, L.K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M.E., Levesley, A., Lima, A.J.N., Lisingo, J., Lopes, A.P., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J.C., Lowe, R., Magnusson, W.E., Malumbres-Olarte, J., Manzatto, ÂG., Marimon B.H., Jr, Marshall, A.R., Marthews, T., de Almeida Reis, S.M., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E.T.A., Morandi, P.S., Mossman, H.L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P.N., Palacios, W., Camacho, N.P., Peacock, J., Pendry, C., Peñuela Mora, M.C., Pickavance, G.C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J.R., Poulsen, A.D., Preziosi, R., Prieto, A., Primack, R.B., Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z.R., de Sousa, T.R., Bayona, L.R., Roopsind, A., Rudas, A., Rutishauser, E., Abu Salim, K., Salomão, R.P., Schietti, J., Sheil, D., Silva, R.C., Espejo, J.S., Valeria, C.S., Silveira, M., Simo-Droissart, M., Simon, M.F., Singh, J., Soto Shareva, Y.C., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M.D., Swamy, V., Taedoumg, H., Talbot, J., Taplin, J., Taylor, D., Ter Steege, H., Terborgh, J., Thomas, R., Thomas, S.C., Torres-Lezama, A., Umunay, P., Gamarra, L.V., van der Heijden, G., van der Hout, P., van der Meer, P., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I.C.G., Torre, E.V., Vleminckx, J., Vos, V., Wang, O., White, L.J.T., Willcock, S., Woods, J.T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P.A., Zwerts, J.A., Phillips, O.L., Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E.N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R.V., Baker, T.R., Brienen, R.J.W., Feldpausch, T.R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.-I., Alexiades, M.N., Almeida, E.C., de Oliveira, E.A., Dávila, E.Á., Loayza, P.A., Andrade, A., Vieira, S.A., Aragão, L.E.O.C., Araujo-Murakami, A., Arets, E.J.M.M., Arroyo, L., Ashton, P., Aymard C, G., Baccaro, F.B., Banin, L.F., Baraloto, C., Camargo, P.B., Barlow, J., Barroso, J., Bastin, J.-F., Batterman, S.A., Beeckman, H., Begne, S.K., Bennett, A.C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F.Q., Brncic, T., Brown, F., Burban, B., Camargo, J.L., Castro, W., Céron, C., Ribeiro, S.C., Moscoso, V.C., Chave, J., Chezeaux, E., Clark, C.J., de Souza, F.C., Collins, M., Comiskey, J.A., Valverde, F.C., Medina, M.C., da Costa, L., Dančák, M., Dargie, G.C., Davies, S., Cardozo, N.D., de Haulleville, T., de Medeiros, M.B., Del Aguila Pasquel, J., Derroire, G., Di Fiore, A., Doucet, J.-L., Dourdain, A., Droissant, V., Duque, L.F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G.F., Foli, E., Ford, A., Gilpin, M., Hall, J.S., Hamer, K.C., Hamilton, A.C., Harris, D.J., Hart, T.B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Coronado, E.H., Huamantupa-Chuquimaco, I., Huasco, W.H., Jeffery, K.J., Jimenez-Rojas, E., Kalamandeen, M., Djuikouo, M.N.K., Kearsley, E., Umetsu, R.K., Kho, L.K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M.E., Levesley, A., Lima, A.J.N., Lisingo, J., Lopes, A.P., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J.C., Lowe, R., Magnusson, W.E., Malumbres-Olarte, J., Manzatto, ÂG., Marimon B.H., Jr, Marshall, A.R., Marthews, T., de Almeida Reis, S.M., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E.T.A., Morandi, P.S., Mossman, H.L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P.N., Palacios, W., Camacho, N.P., Peacock, J., Pendry, C., Peñuela Mora, M.C., Pickavance, G.C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J.R., Poulsen, A.D., Preziosi, R., Prieto, A., Primack, R.B., Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z.R., de Sousa, T.R., Bayona, L.R., Roopsind, A., Rudas, A., Rutishauser, E., Abu Salim, K., Salomão, R.P., Schietti, J., Sheil, D., Silva, R.C., Espejo, J.S., Valeria, C.S., Silveira, M., Simo-Droissart, M., Simon, M.F., Singh, J., Soto Shareva, Y.C., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M.D., Swamy, V., Taedoumg, H., Talbot, J., Taplin, J., Taylor, D., Ter Steege, H., Terborgh, J., Thomas, R., Thomas, S.C., Torres-Lezama, A., Umunay, P., Gamarra, L.V., van der Heijden, G., van der Hout, P., van der Meer, P., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I.C.G., Torre, E.V., Vleminckx, J., Vos, V., Wang, O., White, L.J.T., Willcock, S., Woods, J.T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P.A., Zwerts, J.A., and Phillips, O.L.
- Abstract
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.
- Published
- 2020
6. A global reference dataset for remote sensing of forest biomass. The Forest Observation System approach
- Author
-
Shchepashchenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Banki, O., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S.Y., Bissiengou, P., Blanc, L., Bobkova, K.S., Braslavskaya, T., Brienen, R., Burslem, D., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Doff Sotta, E., d'Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K., Susanty, F.H., Higuchi, N., Honorio Coronado, E.N., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Konan, J.K., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Marimon Junior, B.H., Martinez, R.V., Martynenko, O.V., Matsala, M.S., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Monteagudo-Mendoza, A., Morozyuk, O.V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A.F., Gutierrez, A.P., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silva-Espejo, J.E., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Sullivan, M.J.P., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Valenzuela Gamarra, L.V., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T.A.P., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Zamah Shari, N.H., Zo-Bi, I.C., Shchepashchenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Banki, O., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S.Y., Bissiengou, P., Blanc, L., Bobkova, K.S., Braslavskaya, T., Brienen, R., Burslem, D., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Doff Sotta, E., d'Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K., Susanty, F.H., Higuchi, N., Honorio Coronado, E.N., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Konan, J.K., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Marimon Junior, B.H., Martinez, R.V., Martynenko, O.V., Matsala, M.S., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Monteagudo-Mendoza, A., Morozyuk, O.V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A.F., Gutierrez, A.P., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silva-Espejo, J.E., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Sullivan, M.J.P., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Valenzuela Gamarra, L.V., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T.A.P., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Zamah Shari, N.H., and Zo-Bi, I.C.
- Abstract
Forest biomass is an essential indicator for monitoring the Earth’s ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities. Live, most up-to-date dataset is available at https://forest-observation-system.net
- Published
- 2019
7. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass
- Author
-
Schepaschenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S., Bissiengou, P., Blanc, L., Bobkova, .S., Braslavskaya, T., Brienen, R., Burslem, D., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Sotta, E.D., d’Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K.C., Susanty, F.H., Higuchi, N., Coronado, E.N.H., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V.V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Koffi, J.-C., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Marimon, B.H., Martinez, R.V., Martynenko, O.V., Matsala, M., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Mendoza, A.M., Moroziuk, Olga V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V.G., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Stonozhenko, L., Sullivan, M., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Gamarra, L.V., Vasiliev, S., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Nur Hajar, Z., Zo-Bi, I., Schepaschenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S., Bissiengou, P., Blanc, L., Bobkova, .S., Braslavskaya, T., Brienen, R., Burslem, D., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Sotta, E.D., d’Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K.C., Susanty, F.H., Higuchi, N., Coronado, E.N.H., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V.V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Koffi, J.-C., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Marimon, B.H., Martinez, R.V., Martynenko, O.V., Matsala, M., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Mendoza, A.M., Moroziuk, Olga V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V.G., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Stonozhenko, L., Sullivan, M., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Gamarra, L.V., Vasiliev, S., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Nur Hajar, Z., and Zo-Bi, I.
- Abstract
Forest biomass is an essential indicator for monitoring the Earth’s ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world’s forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
- Published
- 2019
8. Three new species of Craterispermum (Rubiaceae) from the Lower Guinea Domain
- Author
-
Taedoumg, H., Hamon, Perla, and Naturalis journals & series
- Subjects
C. deblockianum ,parasitic diseases ,Equatorial Guinea ,C. rumpianum ,Rubiaceae ,Cameroon ,Gabon ,C. sonkeanum ,Craterispermum - Abstract
Three species of Craterispermum are described from Cameroon, Equatorial Guinea and Gabon. Detailed descriptions and distribution maps are provided for each species, their conservation status is assessed and their taxonomic affinities are discussed. An identification key for the Craterispermum species present in Cameroon, Equatorial Guinea and Gabon is given.
- Published
- 2012
9. Above-ground biomass and structure of 260 African tropical forests
- Author
-
Lewis, S.L., Sonke, B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., van der Heijden, G.M.F., Phillips, O.L., Affum-Baffoe, K., Baker, T.R., Banin, L., Bastin, J-F., Beeckman, H., Boeckx, P., Bogaert, J., De Canniere, C., Chezeaux, E., Clark, C.J., Collins, M., Djagbletey, G., Djuikouo, M.N.K., Droissart, V., Doucet, J.-L., Ewango, C.E.N., Fauset, S., Feldpausch, T.R., Foli, E.G., Gillet, J.-F., Hamilton, A.C., Harris, D.J., Hart, T.B., de Haulleville, T., Hladik, A., Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, K., Kearsley, E., Leal, M. E., Lloyd, J., Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Ojo, L., Peh, K. S.- H., Pickavance, G., Poulsen, J. R., Reitsma, J. M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H. E., Talbot, J., Taplin, J. R. D., Taylor, D., Thomas, S. C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L. J. T., Willcock, S., Woell, H., Zemagho, L., Lewis, S.L., Sonke, B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., van der Heijden, G.M.F., Phillips, O.L., Affum-Baffoe, K., Baker, T.R., Banin, L., Bastin, J-F., Beeckman, H., Boeckx, P., Bogaert, J., De Canniere, C., Chezeaux, E., Clark, C.J., Collins, M., Djagbletey, G., Djuikouo, M.N.K., Droissart, V., Doucet, J.-L., Ewango, C.E.N., Fauset, S., Feldpausch, T.R., Foli, E.G., Gillet, J.-F., Hamilton, A.C., Harris, D.J., Hart, T.B., de Haulleville, T., Hladik, A., Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, K., Kearsley, E., Leal, M. E., Lloyd, J., Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Ojo, L., Peh, K. S.- H., Pickavance, G., Poulsen, J. R., Reitsma, J. M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H. E., Talbot, J., Taplin, J. R. D., Taylor, D., Thomas, S. C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L. J. T., Willcock, S., Woell, H., and Zemagho, L.
- Abstract
We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha21 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha21) similar to those of Bornean forests, and significantly greater than east or west African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426+11 stems ha21 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C :N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.
- Published
- 2013
10. Tree height integrated into pantropical forest biomass estimates
- Author
-
Feldpausch, Ted R., Lloyd, J., Lewis, Simon L., Brienen, R.J.W., Gloor, M., Monteagudo Mendoza, A., Lopez Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, Ieda, Andrade, Ana, Aragao, Luiz, Araujo Murakami, A., Arets, E.J.M.M., Arroyo, L., Aymard, Gerardo, Baker, T.R. de, Banki, Olaf, Berry, N. J., Cardozo, N., Jerome, Chave, Comiskey, J. A., Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T.F., Erwin, T., Fearnside, P. M., França, M. B., Freitas, M. A., Higuchi, Niro, Honorio C., E., Iida, Y., Jimenez, E., Kassim, A.R., Killeen, T.J., Laurance, W.F., Lovett, Jon C., Malhi, Y., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Marshall, A.R., Mendoza, Casimiro, Metcalfe, D.J., Mitchard, E.T.A., Neill, D.A., Nelson, B.W., Nilus, R., Nogueira, E.M., Parada, A., Peh, K.S.-H., Peña Cruz, A., Peñuela, M.C., Pitman, N.C.A., Prieto, A., Quesada, C.A., Ramírez, F., Ramirez Angulo, H., Reitsma, J.M., Rudas, A., Saiz, G., Salomao, R. P., Schwarz, M., Silva, N., Silva Espejo, J.E., Silveira, Marcos, Sonke, Bonaventura, Stropp, Juliana, Taedoumg, H. E., Tan, S., Ter Steege, Hans, Terborgh, J., Torello-Raventos, M., Van der Heijden, Geertje, Vasquez, R., Vilanova, Emilio, Vos, V. A., White, L., Willcock, S., Woell, H., Phillip, Oliver L., Feldpausch, Ted R., Lloyd, J., Lewis, Simon L., Brienen, R.J.W., Gloor, M., Monteagudo Mendoza, A., Lopez Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, Ieda, Andrade, Ana, Aragao, Luiz, Araujo Murakami, A., Arets, E.J.M.M., Arroyo, L., Aymard, Gerardo, Baker, T.R. de, Banki, Olaf, Berry, N. J., Cardozo, N., Jerome, Chave, Comiskey, J. A., Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T.F., Erwin, T., Fearnside, P. M., França, M. B., Freitas, M. A., Higuchi, Niro, Honorio C., E., Iida, Y., Jimenez, E., Kassim, A.R., Killeen, T.J., Laurance, W.F., Lovett, Jon C., Malhi, Y., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Marshall, A.R., Mendoza, Casimiro, Metcalfe, D.J., Mitchard, E.T.A., Neill, D.A., Nelson, B.W., Nilus, R., Nogueira, E.M., Parada, A., Peh, K.S.-H., Peña Cruz, A., Peñuela, M.C., Pitman, N.C.A., Prieto, A., Quesada, C.A., Ramírez, F., Ramirez Angulo, H., Reitsma, J.M., Rudas, A., Saiz, G., Salomao, R. P., Schwarz, M., Silva, N., Silva Espejo, J.E., Silveira, Marcos, Sonke, Bonaventura, Stropp, Juliana, Taedoumg, H. E., Tan, S., Ter Steege, Hans, Terborgh, J., Torello-Raventos, M., Van der Heijden, Geertje, Vasquez, R., Vilanova, Emilio, Vos, V. A., White, L., Willcock, S., Woell, H., and Phillip, Oliver L.
- Abstract
Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- andWeibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (?40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8Mgha?1 (range 6.6 to 112.4) to 8.0Mgha?1 (?2.5 to 23.0). For all plots, aboveground live biomass was ?52.2 Mgha?1 (?82.0 to ?20.3 bootstrapped 95%CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass p
- Published
- 2012
11. A new species of Colletoecema (Rubiaceae) from southern Cameroon with a discussion of relationships among basal Rubioideae
- Author
-
Sonké, B., Dessein, S., Taedoumg, H., Groeninckx, I., Robbrecht, E., Sonké, B., Dessein, S., Taedoumg, H., Groeninckx, I., and Robbrecht, E.
- Abstract
Colletoecema magna, a new species from the Ngovayang Massif (southern Cameroon) is described and illustrated. A comparative morphological study illustrates the similar placentation and fruit anatomy of the novelty and Colletoecema dewevrei, the only other species of the genus. Colletoecema magna essentially differs from C. dewevrei by its sessile flowers and fruits, the corolla tube that is densely hairy above the insertion point of the stamens and the anthers that are included. Further characters that separate the novelty are its larger leaves, more condensed inflorescences, and larger fruits. Its position within Colletoecema is corroborated by atpB-rbcL and rbcL chlorop
- Published
- 2008
12. Three new species of Craterispermum (Rubiaceae) from the Lower Guinea Domain
- Author
-
Taedoumg, H., primary and Hamon, P., additional
- Published
- 2013
- Full Text
- View/download PDF
13. Craterispermum parvifolium and C. robbrechtianum spp. nov. (Rubiaceae) from west central Africa
- Author
-
Taedoumg, H., primary, De Block, P., additional, Hamon, P., additional, and Sonké, B., additional
- Published
- 2011
- Full Text
- View/download PDF
14. Height-diameter allometry of tropical forest trees
- Author
-
Feldpausch, T. R., primary, Banin, L., additional, Phillips, O. L., additional, Baker, T. R., additional, Lewis, S. L., additional, Quesada, C. A., additional, Affum-Baffoe, K., additional, Arets, E. J. M. M., additional, Berry, N. J., additional, Bird, M., additional, Brondizio, E. S., additional, de Camargo, P., additional, Chave, J., additional, Djagbletey, G., additional, Domingues, T. F., additional, Drescher, M., additional, Fearnside, P. M., additional, França, M. B., additional, Fyllas, N. M., additional, Lopez-Gonzalez, G., additional, Hladik, A., additional, Higuchi, N., additional, Hunter, M. O., additional, Iida, Y., additional, Salim, K. A., additional, Kassim, A. R., additional, Keller, M., additional, Kemp, J., additional, King, D. A., additional, Lovett, J. C., additional, Marimon, B. S., additional, Marimon-Junior, B. H., additional, Lenza, E., additional, Marshall, A. R., additional, Metcalfe, D. J., additional, Mitchard, E. T. A., additional, Moran, E. F., additional, Nelson, B. W., additional, Nilus, R., additional, Nogueira, E. M., additional, Palace, M., additional, Patiño, S., additional, Peh, K. S.-H., additional, Raventos, M. T., additional, Reitsma, J. M., additional, Saiz, G., additional, Schrodt, F., additional, Sonké, B., additional, Taedoumg, H. E., additional, Tan, S., additional, White, L., additional, Wöll, H., additional, and Lloyd, J., additional
- Published
- 2011
- Full Text
- View/download PDF
15. Supplementary material to "Height-diameter allometry of tropical forest trees"
- Author
-
Feldpausch, T. R., primary, Banin, L., additional, Phillips, O. L., additional, Baker, T. R., additional, Lewis, S. L., additional, Quesada, C. A., additional, Affum-Baffoe, K., additional, Arets, E. J. M. M., additional, Berry, N. J., additional, Bird, M., additional, Brondizio, E. S., additional, de Camargo, P., additional, Chave, J., additional, Djagbletey, G., additional, Domingues, T. F., additional, Drescher, M., additional, Fearnside, P. M., additional, França, M. B., additional, Fyllas, N. M., additional, Lopez-Gonzalez, G., additional, Hladik, A., additional, Higuchi, N., additional, Hunter, M. O., additional, Iida, Y., additional, Abu Silam, K., additional, Kassim, A. R., additional, Keller, M., additional, Kemp, J., additional, King, D. A., additional, Lovett, J. C., additional, Marimon, B. S., additional, Marimon-Junior, B. H., additional, Lenza, E., additional, Marshall, A. R., additional, Metcalfe, D. J., additional, Mitchard, E. T. A., additional, Moran, E. F., additional, Nelson, B. W., additional, Nilus, R., additional, Nogueira, E. M., additional, Palace, M., additional, Patiño, S., additional, Peh, K. S.-H., additional, Raventos, M. T., additional, Reitsma, J. M., additional, Saiz, G., additional, Schrodt, F., additional, Sonké, B., additional, Taedoumg, H. E., additional, Tan, S., additional, White, L., additional, Wöll, H., additional, and Lloyd, J., additional
- Published
- 2010
- Full Text
- View/download PDF
16. Height-diameter allometry of tropical forest trees
- Author
-
Feldpausch, T. R., primary, Banin, L., additional, Phillips, O. L., additional, Baker, T. R., additional, Lewis, S. L., additional, Quesada, C. A., additional, Affum-Baffoe, K., additional, Arets, E. J. M. M., additional, Berry, N. J., additional, Bird, M., additional, Brondizio, E. S., additional, de Camargo, P., additional, Chave, J., additional, Djagbletey, G., additional, Domingues, T. F., additional, Drescher, M., additional, Fearnside, P. M., additional, França, M. B., additional, Fyllas, N. M., additional, Lopez-Gonzalez, G., additional, Hladik, A., additional, Higuchi, N., additional, Hunter, M. O., additional, Iida, Y., additional, Abu Silam, K., additional, Kassim, A. R., additional, Keller, M., additional, Kemp, J., additional, King, D. A., additional, Lovett, J. C., additional, Marimon, B. S., additional, Marimon-Junior, B. H., additional, Lenza, E., additional, Marshall, A. R., additional, Metcalfe, D. J., additional, Mitchard, E. T. A., additional, Moran, E. F., additional, Nelson, B. W., additional, Nilus, R., additional, Nogueira, E. M., additional, Palace, M., additional, Patiño, S., additional, Peh, K. S.-H., additional, Raventos, M. T., additional, Reitsma, J. M., additional, Saiz, G., additional, Schrodt, F., additional, Sonké, B., additional, Taedoumg, H. E., additional, Tan, S., additional, White, L., additional, Wöll, H., additional, and Lloyd, J., additional
- Published
- 2010
- Full Text
- View/download PDF
17. A new species of Colletoecema (Rubiaceae) from southern Cameroon with a discussion of relationships among basal Rubioideae
- Author
-
Sonké, B., primary, Dessein, S., additional, Taedoumg, H., additional, Groeninckx, I., additional, and Robbrecht, E., additional
- Published
- 2008
- Full Text
- View/download PDF
18. Craterispermum parvifolium and C. robbrechtianum spp. nov. (Rubiaceae) from west central Africa.
- Author
-
Taedoumg, H., De Block, P., Hamon, P., and Sonké, B.
- Subjects
- *
RUBIACEAE , *PLANT conservation , *PLANT classification , *PLANT species , *EFFECT of aluminum on plants , *ALUMINUM - Abstract
Craterispermum parvifolium and C. robbrechtianum spp. nov. are described from the Lower Guinea Domain. Detailed descriptions and distribution maps are provided for each species, their conservation status is assessed and their taxonomic affinities are discussed. An identification key for the Craterispermum species of the Lower Guinea Domain is given. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
19. Floristics and biogeography of vegetation in seasonally dry tropical regions
- Author
-
Dexter, K. G., Smart, B., Baldauf, C., Baker, T. R., Balinga, M. P. Bessike, Brienen, R. J. W., Fauset, S., Ted R. Feldpausch, Ferreira-Da Silva, L., Muledi, J. Ilunga, Lewis, S. L., Lopez-Gonzalez, G., Marimon-Junior, B. H., Marimon, B. S., Meerts, P., Page, N., Parthasarathy, N., Phillips, O. L., Sunderland, T. C. H., Theilade, I., Weintritt, J., Affum-Baffoe, K., Araujo, A., Arroyo, L., Begne, S. K., Carvalho-Das Neves, E., Collins, M., Cuni-Sanchez, A., Djuikouo, M. N. K., Elias, F., Foli, E. G., Jeffery, K. J., Killeen, T. J., Malhi, Y., Maracahipes, L., Mendoza, C., Monteagudo-Mendoza, A., Morandi, P., Oliveira-Dos Santos, C., Parada, A. G., Pardo, G., Peh, K. S. -H, Salomao, R. P., Silveira, M., Sinatora-Miranda, H., Slik, J. W. F., Sonke, B., Taedoumg, H. E., Toledo, M., Umetsu, R. K., Villaroel, R. G., Vos, V. A., White, L. J. T., and Pennington, R. T.
- Subjects
Tropical and subtropical dry broadleaf forests ,Flora ,Ecology ,Biogeography ,Geography, Planning and Development ,Tropical vegetation ,Tropics ,Forestry ,Rainforest ,Vegetation ,Floristics - Abstract
To provide an inter-continental overview of the floristics and biogeography of drought-adapted tropical vegetation formations, we compiled a dataset of inventory plots in South America (n=93), Africa (n=84), and Asia (n=92) from savannas (subject to fire), seasonally dry tropical forests (not generally subject to fire), and moist forests (no fire). We analysed floristic similarity across vegetation formations within and between continents. Our dataset strongly suggests that different formations tend to be strongly clustered floristically by continent, and that among continents, superficially similar vegetation formations (e.g. savannas) are floristically highly dissimilar. Neotropical moist forest, savanna and seasonally dry tropical forest are floristically distinct, but elsewhere there is no clear floristic division of savanna and seasonally dry tropical forest, though moist and dry formations are separate. We suggest that because of their propensity to burn, many formations termed “dry forest” in Africa and Asia are best considered as savannas. The floristic differentiation of similar vegetation formations from different continents suggests that cross-continental generalisations of the ecology, biology and conservation of savannas and seasonally dry tropical forests may be difficult.
20. Above-ground biomass and structure of 260 African tropical forests
- Author
-
Lewis, S. L., Sonke, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., Phillips, O. L., Affum-Baffoe, K., Baker, T. R., Banin, L., Bastin, J.-F., Beeckman, H., Boeckx, P., Bogaert, J., De Canniere, C., Chezeaux, E., Clark, C. J., Collins, Murray, Djagbletey, G., Djuikouo, M. N. K., Droissart, V., Doucet, J.-L., Ewango, C. E. N., Fauset, S., Feldpausch, T. R., Foli, E. G., Gillet, J.-F., Hamilton, A. C., Harris, D. J., Hart, T. B., de Haulleville, T., Hladik, A., Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, K. J., Kearsley, E., Leal, M. E., Lloyd, J., Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Ojo, L., Peh, K. S.- H., Pickavance, G., Poulsen, J. R., Reitsma, J. M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H. E., Talbot, J., Taplin, J. R. D., Taylor, D., Thomas, S. C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L. J. T., Willcock, S., Woell, H., Zemagho, L., Lewis, S. L., Sonke, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., Phillips, O. L., Affum-Baffoe, K., Baker, T. R., Banin, L., Bastin, J.-F., Beeckman, H., Boeckx, P., Bogaert, J., De Canniere, C., Chezeaux, E., Clark, C. J., Collins, Murray, Djagbletey, G., Djuikouo, M. N. K., Droissart, V., Doucet, J.-L., Ewango, C. E. N., Fauset, S., Feldpausch, T. R., Foli, E. G., Gillet, J.-F., Hamilton, A. C., Harris, D. J., Hart, T. B., de Haulleville, T., Hladik, A., Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, K. J., Kearsley, E., Leal, M. E., Lloyd, J., Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Ojo, L., Peh, K. S.- H., Pickavance, G., Poulsen, J. R., Reitsma, J. M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H. E., Talbot, J., Taplin, J. R. D., Taylor, D., Thomas, S. C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L. J. T., Willcock, S., Woell, H., and Zemagho, L.
- Abstract
We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha-1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha-1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low(426±11 stems ha-1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C:Nratio (suggesting a positive soil phosphorus- AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.
21. The number of tree species on Earth
- Author
-
Roberto Cazzolla Gatti, Peter B. Reich, Javier G. P. Gamarra, Tom Crowther, Cang Hui, Albert Morera, Jean-Francois Bastin, Sergio de-Miguel, Gert-Jan Nabuurs, Jens-Christian Svenning, Josep M. Serra-Diaz, Cory Merow, Brian Enquist, Maria Kamenetsky, Junho Lee, Jun Zhu, Jinyun Fang, Douglass F. Jacobs, Bryan Pijanowski, Arindam Banerjee, Robert A. Giaquinto, Giorgio Alberti, Angelica Maria Almeyda Zambrano, Esteban Alvarez-Davila, Alejandro Araujo-Murakami, Valerio Avitabile, Gerardo A. Aymard, Radomir Balazy, Chris Baraloto, Jorcely G. Barroso, Meredith L. Bastian, Philippe Birnbaum, Robert Bitariho, Jan Bogaert, Frans Bongers, Olivier Bouriaud, Pedro H. S. Brancalion, Francis Q. Brearley, Eben North Broadbent, Filippo Bussotti, Wendeson Castro da Silva, Ricardo Gomes César, Goran Češljar, Víctor Chama Moscoso, Han Y. H. Chen, Emil Cienciala, Connie J. Clark, David A. Coomes, Selvadurai Dayanandan, Mathieu Decuyper, Laura E. Dee, Jhon Del Aguila Pasquel, Géraldine Derroire, Marie Noel Kamdem Djuikouo, Tran Van Do, Jiri Dolezal, Ilija Đ. Đorđević, Julien Engel, Tom M. Fayle, Ted R. Feldpausch, Jonas K. Fridman, David J. Harris, Andreas Hemp, Geerten Hengeveld, Bruno Herault, Martin Herold, Thomas Ibanez, Andrzej M. Jagodzinski, Bogdan Jaroszewicz, Kathryn J. Jeffery, Vivian Kvist Johannsen, Tommaso Jucker, Ahto Kangur, Victor N. Karminov, Kuswata Kartawinata, Deborah K. Kennard, Sebastian Kepfer-Rojas, Gunnar Keppel, Mohammed Latif Khan, Pramod Kumar Khare, Timothy J. Kileen, Hyun Seok Kim, Henn Korjus, Amit Kumar, Ashwani Kumar, Diana Laarmann, Nicolas Labrière, Mait Lang, Simon L. Lewis, Natalia Lukina, Brian S. Maitner, Yadvinder Malhi, Andrew R. Marshall, Olga V. Martynenko, Abel L. Monteagudo Mendoza, Petr V. Ontikov, Edgar Ortiz-Malavasi, Nadir C. Pallqui Camacho, Alain Paquette, Minjee Park, Narayanaswamy Parthasarathy, Pablo Luis Peri, Pascal Petronelli, Sebastian Pfautsch, Oliver L. Phillips, Nicolas Picard, Daniel Piotto, Lourens Poorter, John R. Poulsen, Hans Pretzsch, Hirma Ramírez-Angulo, Zorayda Restrepo Correa, Mirco Rodeghiero, Rocío Del Pilar Rojas Gonzáles, Samir G. Rolim, Francesco Rovero, Ervan Rutishauser, Purabi Saikia, Christian Salas-Eljatib, Dmitry Schepaschenko, Michael Scherer-Lorenzen, Vladimír Šebeň, Marcos Silveira, Ferry Slik, Bonaventure Sonké, Alexandre F. Souza, Krzysztof Jan Stereńczak, Miroslav Svoboda, Hermann Taedoumg, Nadja Tchebakova, John Terborgh, Elena Tikhonova, Armando Torres-Lezama, Fons van der Plas, Rodolfo Vásquez, Helder Viana, Alexander C. Vibrans, Emilio Vilanova, Vincent A. Vos, Hua-Feng Wang, Bertil Westerlund, Lee J. T. White, Susan K. Wiser, Tomasz Zawiła-Niedźwiecki, Lise Zemagho, Zhi-Xin Zhu, Irié C. Zo-Bi, Jingjing Liang, Cazzolla Gatti, Roberto, Reich, Peter B, Gamarra, Javier GP, Crowther, Tom, Keppel, Gunnar, Liang, Jingjing, Cazzolla Gatti R., Reich P.B., Gamarra J.G.P., Crowther T., Hui C., Morera A., Bastin J.-F., de-Miguel S., Nabuurs G.-J., Svenning J.-C., Serra-Diaz J.M., Merow C., Enquist B., Kamenetsky M., Lee J., Zhu J., Fang J., Jacobs D.F., Pijanowski B., Banerjee A., Giaquinto R.A., Alberti G., Almeyda Zambrano A.M., Alvarez-Davila E., Araujo-Murakami A., Avitabile V., Aymard G.A., Balazy R., Baraloto C., Barroso J.G., Bastian M.L., Birnbaum P., Bitariho R., Bogaert J., Bongers F., Bouriaud O., Brancalion P.H.S., Brearley F.Q., Broadbent E.N., Bussotti F., Castro da Silva W., Cesar R.G., Cesljar G., Chama Moscoso V., Chen H.Y.H., Cienciala E., Clark C.J., Coomes D.A., Dayanandan S., Decuyper M., Dee L.E., Del Aguila Pasquel J., Derroire G., Djuikouo M.N.K., Van Do T., Dolezal J., Dordevic I.D., Engel J., Fayle T.M., Feldpausch T.R., Fridman J.K., Harris D.J., Hemp A., Hengeveld G., Herault B., Herold M., Ibanez T., Jagodzinski A.M., Jaroszewicz B., Jeffery K.J., Johannsen V.K., Jucker T., Kangur A., Karminov V.N., Kartawinata K., Kennard D.K., Kepfer-Rojas S., Keppel G., Khan M.L., Khare P.K., Kileen T.J., Kim H.S., Korjus H., Kumar A., Laarmann D., Labriere N., Lang M., Lewis S.L., Lukina N., Maitner B.S., Malhi Y., Marshall A.R., Martynenko O.V., Monteagudo Mendoza A.L., Ontikov P.V., Ortiz-Malavasi E., Pallqui Camacho N.C., Paquette A., Park M., Parthasarathy N., Peri P.L., Petronelli P., Pfautsch S., Phillips O.L., Picard N., Piotto D., Poorter L., Poulsen J.R., Pretzsch H., Ramirez-Angulo H., Restrepo Correa Z., Rodeghiero M., Rojas Gonzales R.D.P., Rolim S.G., Rovero F., Rutishauser E., Saikia P., Salas-Eljatib C., Schepaschenko D., Scherer-Lorenzen M., Seben V., Silveira M., Slik F., Sonke B., Souza A.F., Sterenczak K.J., Svoboda M., Taedoumg H., Tchebakova N., Terborgh J., Tikhonova E., Torres-Lezama A., van der Plas F., Vasquez R., Viana H., Vibrans A.C., Vilanova E., Vos V.A., Wang H.-F., Westerlund B., White L.J.T., Wiser S.K., Zawila-Niedzwiecki T., Zemagho L., Zhu Z.-X., Zo-Bi I.C., Liang J., Purdue University [West Lafayette], University of Wisconsin-Madison, FAO Forestry, Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO), SILVA (SILVA), AgroParisTech-Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Institut de Recherche pour le Développement (IRD [Nouvelle-Calédonie]), Cazzolla Gatti, Roberto [0000-0001-5130-8492], Reich, Peter B [0000-0003-4424-662X], Hui, Cang [0000-0002-3660-8160], Morera, Albert [0000-0002-6777-169X], de-Miguel, Sergio [0000-0002-9738-0657], Svenning, Jens-Christian [0000-0002-3415-0862], Serra-Diaz, Josep M [0000-0003-1988-1154], Alberti, Giorgio [0000-0003-2422-3009], Bongers, Frans [0000-0002-8431-6189], Bouriaud, Olivier [0000-0002-8046-466X], Brancalion, Pedro HS [0000-0001-8245-4062], César, Ricardo Gomes [0000-0002-3392-8089], Chen, Han YH [0000-0001-9477-5541], Cienciala, Emil [0000-0002-1254-4254], Coomes, David [0000-0002-8261-2582], Djuikouo, Marie Noel Kamdem [0000-0003-0064-5151], Van Do, Tran [0000-0001-9059-5842], Feldpausch, Ted R [0000-0002-6631-7962], Jaroszewicz, Bogdan [0000-0002-2042-8245], Jeffery, Kathryn J [0000-0002-2632-0008], Kennard, Deborah K [0000-0003-4842-8260], Kim, Hyun Seok [0000-0002-3440-6071], Labrière, Nicolas [0000-0002-8037-2001], Maitner, Brian S [0000-0002-2118-9880], Malhi, Yadvinder [0000-0002-3503-4783], Peri, Pablo Luis [0000-0002-5398-4408], Phillips, Oliver L [0000-0002-8993-6168], Poorter, Lourens [0000-0003-1391-4875], Poulsen, John R [0000-0002-1532-9808], Salas-Eljatib, Christian [0000-0002-8468-0829], Schepaschenko, Dmitry [0000-0002-7814-4990], Silveira, Marcos [0000-0003-0485-7872], Slik, Ferry [0000-0003-3988-7019], Sonké, Bonaventure [0000-0002-4310-3603], Terborgh, John [0000-0003-1853-8311], Wiser, Susan K [0000-0002-8938-8181], Liang, Jingjing [0000-0001-9439-9320], Apollo - University of Cambridge Repository, and Coomes, David A [0000-0002-8261-2582]
- Subjects
Cambios Antropogénicos ,Richness ,SAMPLE ,Earth, Planet ,Rarity ,Bos- en Landschapsecologie ,DIVERSITY ,Forests ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,Trees ,forest ,Bioma ,Laboratory of Geo-information Science and Remote Sensing ,Biome ,espèce (taxon) ,HETEROGENEITY ,Forest and Landscape Ecology ,Forest Biodiversity ,hyperdominance ,Riqueza de Especies ,Ecosystem Services ,biodiversity, forests, hyperdominance, rarity, richness ,biodiversity ,Multidisciplinary ,Hyperdominance ,Overall Scale ,F70 - Taxonomie végétale et phytogéographie ,Biodiversity ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,Écologie des populations ,PE&RC ,COVERAGE ,Boscos i silvicultura ,Biometris ,Forest Ecosystems ,ABUNDANCE ,Anthropogenic Changes ,Vegetatie, Bos- en Landschapsecologie ,Biodiversité ,леса ,Conservation of Natural Resources ,F40 - Écologie végétale ,Servicios de los Ecosistemas ,Vulnerability ,ECOLOGIA DE POPULAÇÕES ,Arbre ,ECOLOGY ,Biodiversidad ,forests ,rarity ,richness ,Ecosistemas Forestales ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,COMPLETENESS ,Árboles ,Settore BIO/07 - ECOLOGIA ,Richness Species ,Bosecologie en Bosbeheer ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,K70 - Dégâts causés aux forêts et leur protection ,Biodiversidad Forestal ,Escala Global ,Vegetatie ,деревья ,Vegetation ,Forest Ecology and Forest Management ,biodiversité forestière ,биоразнообразие ,PATTERNS ,Vegetation, Forest and Landscape Ecology ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Vulnerabilidad - Abstract
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness., Proceedings of the National Academy of Sciences of the United States of America, 119 (6), ISSN:0027-8424, ISSN:1091-6490
- Published
- 2022
- Full Text
- View/download PDF
22. The number of tree species on Earth.
- Author
-
Cazzolla Gatti R, Reich PB, Gamarra JGP, Crowther T, Hui C, Morera A, Bastin JF, de-Miguel S, Nabuurs GJ, Svenning JC, Serra-Diaz JM, Merow C, Enquist B, Kamenetsky M, Lee J, Zhu J, Fang J, Jacobs DF, Pijanowski B, Banerjee A, Giaquinto RA, Alberti G, Almeyda Zambrano AM, Alvarez-Davila E, Araujo-Murakami A, Avitabile V, Aymard GA, Balazy R, Baraloto C, Barroso JG, Bastian ML, Birnbaum P, Bitariho R, Bogaert J, Bongers F, Bouriaud O, Brancalion PHS, Brearley FQ, Broadbent EN, Bussotti F, Castro da Silva W, César RG, Češljar G, Chama Moscoso V, Chen HYH, Cienciala E, Clark CJ, Coomes DA, Dayanandan S, Decuyper M, Dee LE, Del Aguila Pasquel J, Derroire G, Djuikouo MNK, Van Do T, Dolezal J, Đorđević IĐ, Engel J, Fayle TM, Feldpausch TR, Fridman JK, Harris DJ, Hemp A, Hengeveld G, Herault B, Herold M, Ibanez T, Jagodzinski AM, Jaroszewicz B, Jeffery KJ, Johannsen VK, Jucker T, Kangur A, Karminov VN, Kartawinata K, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Khare PK, Kileen TJ, Kim HS, Korjus H, Kumar A, Kumar A, Laarmann D, Labrière N, Lang M, Lewis SL, Lukina N, Maitner BS, Malhi Y, Marshall AR, Martynenko OV, Monteagudo Mendoza AL, Ontikov PV, Ortiz-Malavasi E, Pallqui Camacho NC, Paquette A, Park M, Parthasarathy N, Peri PL, Petronelli P, Pfautsch S, Phillips OL, Picard N, Piotto D, Poorter L, Poulsen JR, Pretzsch H, Ramírez-Angulo H, Restrepo Correa Z, Rodeghiero M, Rojas Gonzáles RDP, Rolim SG, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Schepaschenko D, Scherer-Lorenzen M, Šebeň V, Silveira M, Slik F, Sonké B, Souza AF, Stereńczak KJ, Svoboda M, Taedoumg H, Tchebakova N, Terborgh J, Tikhonova E, Torres-Lezama A, van der Plas F, Vásquez R, Viana H, Vibrans AC, Vilanova E, Vos VA, Wang HF, Westerlund B, White LJT, Wiser SK, Zawiła-Niedźwiecki T, Zemagho L, Zhu ZX, Zo-Bi IC, and Liang J
- Subjects
- Earth, Planet, Trees growth & development, Conservation of Natural Resources, Forests, Trees classification
- Abstract
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness., Competing Interests: Competing interest statement: M.L.B. is an employee of PNAS., (Copyright © 2022 the Author(s). Published by PNAS.)
- Published
- 2022
- Full Text
- View/download PDF
23. High aboveground carbon stock of African tropical montane forests.
- Author
-
Cuni-Sanchez A, Sullivan MJP, Platts PJ, Lewis SL, Marchant R, Imani G, Hubau W, Abiem I, Adhikari H, Albrecht T, Altman J, Amani C, Aneseyee AB, Avitabile V, Banin L, Batumike R, Bauters M, Beeckman H, Begne SK, Bennett AC, Bitariho R, Boeckx P, Bogaert J, Bräuning A, Bulonvu F, Burgess ND, Calders K, Chapman C, Chapman H, Comiskey J, de Haulleville T, Decuyper M, DeVries B, Dolezal J, Droissart V, Ewango C, Feyera S, Gebrekirstos A, Gereau R, Gilpin M, Hakizimana D, Hall J, Hamilton A, Hardy O, Hart T, Heiskanen J, Hemp A, Herold M, Hiltner U, Horak D, Kamdem MN, Kayijamahe C, Kenfack D, Kinyanjui MJ, Klein J, Lisingo J, Lovett J, Lung M, Makana JR, Malhi Y, Marshall A, Martin EH, Mitchard ETA, Morel A, Mukendi JT, Muller T, Nchu F, Nyirambangutse B, Okello J, Peh KS, Pellikka P, Phillips OL, Plumptre A, Qie L, Rovero F, Sainge MN, Schmitt CB, Sedlacek O, Ngute ASK, Sheil D, Sheleme D, Simegn TY, Simo-Droissart M, Sonké B, Soromessa T, Sunderland T, Svoboda M, Taedoumg H, Taplin J, Taylor D, Thomas SC, Timberlake J, Tuagben D, Umunay P, Uzabaho E, Verbeeck H, Vleminckx J, Wallin G, Wheeler C, Willcock S, Woods JT, and Zibera E
- Subjects
- Africa, Biomass, Climate Change, Conservation of Natural Resources, Datasets as Topic, Geographic Mapping, Attitude, Carbon analysis, Carbon Sequestration, Rainforest, Trees metabolism, Tropical Climate
- Abstract
Tropical forests store 40-50 per cent of terrestrial vegetation carbon
1 . However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2 . Owing to climatic and soil changes with increasing elevation3 , AGC stocks are lower in tropical montane forests compared with lowland forests2 . Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8 . We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems., (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2021
- Full Text
- View/download PDF
24. Resistance of African tropical forests to an extreme climate anomaly.
- Author
-
Bennett AC, Dargie GC, Cuni-Sanchez A, Tshibamba Mukendi J, Hubau W, Mukinzi JM, Phillips OL, Malhi Y, Sullivan MJP, Cooper DLM, Adu-Bredu S, Affum-Baffoe K, Amani CA, Banin LF, Beeckman H, Begne SK, Bocko YE, Boeckx P, Bogaert J, Brncic T, Chezeaux E, Clark CJ, Daniels AK, de Haulleville T, Djuikouo Kamdem MN, Doucet JL, Evouna Ondo F, Ewango CEN, Feldpausch TR, Foli EG, Gonmadje C, Hall JS, Hardy OJ, Harris DJ, Ifo SA, Jeffery KJ, Kearsley E, Leal M, Levesley A, Makana JR, Mbayu Lukasu F, Medjibe VP, Mihindu V, Moore S, Nssi Begone N, Pickavance GC, Poulsen JR, Reitsma J, Sonké B, Sunderland TCH, Taedoumg H, Talbot J, Tuagben DS, Umunay PM, Verbeeck H, Vleminckx J, White LJT, Woell H, Woods JT, Zemagho L, and Lewis SL
- Subjects
- Carbon Cycle, Droughts, El Nino-Southern Oscillation, Hot Temperature, Humans, Seasons, Climate Change, Rainforest, Trees growth & development, Tropical Climate
- Abstract
The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha
-1 y-1 ) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests., Competing Interests: The authors declare no competing interest., (Copyright © 2021 the Author(s). Published by PNAS.)- Published
- 2021
- Full Text
- View/download PDF
25. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa.
- Author
-
Rozendaal DMA, Phillips OL, Lewis SL, Affum-Baffoe K, Alvarez-Davila E, Andrade A, Aragão LEOC, Araujo-Murakami A, Baker TR, Bánki O, Brienen RJW, Camargo JLC, Comiskey JA, Djuikouo Kamdem MN, Fauset S, Feldpausch TR, Killeen TJ, Laurance WF, Laurance SGW, Lovejoy T, Malhi Y, Marimon BS, Marimon Junior BH, Marshall AR, Neill DA, Núñez Vargas P, Pitman NCA, Poorter L, Reitsma J, Silveira M, Sonké B, Sunderland T, Taedoumg H, Ter Steege H, Terborgh JW, Umetsu RK, van der Heijden GMF, Vilanova E, Vos V, White LJT, Willcock S, Zemagho L, and Vanderwel MC
- Subjects
- Africa, Brazil, Ecosystem, Tropical Climate, Forests, Wood
- Abstract
Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area., (© 2020 The Authors. Ecology published by Wiley Periodicals LLC on behalf of Ecological Society of America.)
- Published
- 2020
- Full Text
- View/download PDF
26. Long-term thermal sensitivity of Earth's tropical forests.
- Author
-
Sullivan MJP, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Sanchez AC, Ewango CEN, Hubau W, Marimon B, Monteagudo-Mendoza A, Qie L, Sonké B, Martinez RV, Baker TR, Brienen RJW, Feldpausch TR, Galbraith D, Gloor M, Malhi Y, Aiba SI, Alexiades MN, Almeida EC, de Oliveira EA, Dávila EÁ, Loayza PA, Andrade A, Vieira SA, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Ashton P, Aymard C G, Baccaro FB, Banin LF, Baraloto C, Camargo PB, Barlow J, Barroso J, Bastin JF, Batterman SA, Beeckman H, Begne SK, Bennett AC, Berenguer E, Berry N, Blanc L, Boeckx P, Bogaert J, Bonal D, Bongers F, Bradford M, Brearley FQ, Brncic T, Brown F, Burban B, Camargo JL, Castro W, Céron C, Ribeiro SC, Moscoso VC, Chave J, Chezeaux E, Clark CJ, de Souza FC, Collins M, Comiskey JA, Valverde FC, Medina MC, da Costa L, Dančák M, Dargie GC, Davies S, Cardozo ND, de Haulleville T, de Medeiros MB, Del Aguila Pasquel J, Derroire G, Di Fiore A, Doucet JL, Dourdain A, Droissart V, Duque LF, Ekoungoulou R, Elias F, Erwin T, Esquivel-Muelbert A, Fauset S, Ferreira J, Llampazo GF, Foli E, Ford A, Gilpin M, Hall JS, Hamer KC, Hamilton AC, Harris DJ, Hart TB, Hédl R, Herault B, Herrera R, Higuchi N, Hladik A, Coronado EH, Huamantupa-Chuquimaco I, Huasco WH, Jeffery KJ, Jimenez-Rojas E, Kalamandeen M, Djuikouo MNK, Kearsley E, Umetsu RK, Kho LK, Killeen T, Kitayama K, Klitgaard B, Koch A, Labrière N, Laurance W, Laurance S, Leal ME, Levesley A, Lima AJN, Lisingo J, Lopes AP, Lopez-Gonzalez G, Lovejoy T, Lovett JC, Lowe R, Magnusson WE, Malumbres-Olarte J, Manzatto ÂG, Marimon BH Jr, Marshall AR, Marthews T, de Almeida Reis SM, Maycock C, Melgaço K, Mendoza C, Metali F, Mihindou V, Milliken W, Mitchard ETA, Morandi PS, Mossman HL, Nagy L, Nascimento H, Neill D, Nilus R, Vargas PN, Palacios W, Camacho NP, Peacock J, Pendry C, Peñuela Mora MC, Pickavance GC, Pipoly J, Pitman N, Playfair M, Poorter L, Poulsen JR, Poulsen AD, Preziosi R, Prieto A, Primack RB, Ramírez-Angulo H, Reitsma J, Réjou-Méchain M, Correa ZR, de Sousa TR, Bayona LR, Roopsind A, Rudas A, Rutishauser E, Abu Salim K, Salomão RP, Schietti J, Sheil D, Silva RC, Espejo JS, Valeria CS, Silveira M, Simo-Droissart M, Simon MF, Singh J, Soto Shareva YC, Stahl C, Stropp J, Sukri R, Sunderland T, Svátek M, Swaine MD, Swamy V, Taedoumg H, Talbot J, Taplin J, Taylor D, Ter Steege H, Terborgh J, Thomas R, Thomas SC, Torres-Lezama A, Umunay P, Gamarra LV, van der Heijden G, van der Hout P, van der Meer P, van Nieuwstadt M, Verbeeck H, Vernimmen R, Vicentini A, Vieira ICG, Torre EV, Vleminckx J, Vos V, Wang O, White LJT, Willcock S, Woods JT, Wortel V, Young K, Zagt R, Zemagho L, Zuidema PA, Zwerts JA, and Phillips OL
- Subjects
- Acclimatization, Biomass, Carbon metabolism, Earth, Planet, Wood, Carbon Cycle, Climate Change, Forests, Hot Temperature, Trees metabolism, Tropical Climate
- Abstract
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2020
- Full Text
- View/download PDF
27. Asynchronous carbon sink saturation in African and Amazonian tropical forests.
- Author
-
Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, Sheil D, Sonké B, Sullivan MJP, Sunderland TCH, Taedoumg H, Thomas SC, White LJT, Abernethy KA, Adu-Bredu S, Amani CA, Baker TR, Banin LF, Baya F, Begne SK, Bennett AC, Benedet F, Bitariho R, Bocko YE, Boeckx P, Boundja P, Brienen RJW, Brncic T, Chezeaux E, Chuyong GB, Clark CJ, Collins M, Comiskey JA, Coomes DA, Dargie GC, de Haulleville T, Kamdem MND, Doucet JL, Esquivel-Muelbert A, Feldpausch TR, Fofanah A, Foli EG, Gilpin M, Gloor E, Gonmadje C, Gourlet-Fleury S, Hall JS, Hamilton AC, Harris DJ, Hart TB, Hockemba MBN, Hladik A, Ifo SA, Jeffery KJ, Jucker T, Yakusu EK, Kearsley E, Kenfack D, Koch A, Leal ME, Levesley A, Lindsell JA, Lisingo J, Lopez-Gonzalez G, Lovett JC, Makana JR, Malhi Y, Marshall AR, Martin J, Martin EH, Mbayu FM, Medjibe VP, Mihindou V, Mitchard ETA, Moore S, Munishi PKT, Bengone NN, Ojo L, Ondo FE, Peh KS, Pickavance GC, Poulsen AD, Poulsen JR, Qie L, Reitsma J, Rovero F, Swaine MD, Talbot J, Taplin J, Taylor DM, Thomas DW, Toirambe B, Mukendi JT, Tuagben D, Umunay PM, van der Heijden GMF, Verbeeck H, Vleminckx J, Willcock S, Wöll H, Woods JT, and Zemagho L
- Subjects
- Africa, Atmosphere chemistry, Biomass, Brazil, Droughts, History, 20th Century, History, 21st Century, Models, Theoretical, Temperature, Carbon Dioxide metabolism, Carbon Sequestration, Forests, Trees metabolism, Tropical Climate
- Abstract
Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions
1-3 . Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5 . Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6 . Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9 . Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.- Published
- 2020
- Full Text
- View/download PDF
28. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass.
- Author
-
Schepaschenko D, Chave J, Phillips OL, Lewis SL, Davies SJ, Réjou-Méchain M, Sist P, Scipal K, Perger C, Herault B, Labrière N, Hofhansl F, Affum-Baffoe K, Aleinikov A, Alonso A, Amani C, Araujo-Murakami A, Armston J, Arroyo L, Ascarrunz N, Azevedo C, Baker T, Bałazy R, Bedeau C, Berry N, Bilous AM, Bilous SY, Bissiengou P, Blanc L, Bobkova KS, Braslavskaya T, Brienen R, Burslem DFRP, Condit R, Cuni-Sanchez A, Danilina D, Del Castillo Torres D, Derroire G, Descroix L, Sotta ED, d'Oliveira MVN, Dresel C, Erwin T, Evdokimenko MD, Falck J, Feldpausch TR, Foli EG, Foster R, Fritz S, Garcia-Abril AD, Gornov A, Gornova M, Gothard-Bassébé E, Gourlet-Fleury S, Guedes M, Hamer KC, Susanty FH, Higuchi N, Coronado ENH, Hubau W, Hubbell S, Ilstedt U, Ivanov VV, Kanashiro M, Karlsson A, Karminov VN, Killeen T, Koffi JK, Konovalova M, Kraxner F, Krejza J, Krisnawati H, Krivobokov LV, Kuznetsov MA, Lakyda I, Lakyda PI, Licona JC, Lucas RM, Lukina N, Lussetti D, Malhi Y, Manzanera JA, Marimon B, Junior BHM, Martinez RV, Martynenko OV, Matsala M, Matyashuk RK, Mazzei L, Memiaghe H, Mendoza C, Mendoza AM, Moroziuk OV, Mukhortova L, Musa S, Nazimova DI, Okuda T, Oliveira LC, Ontikov PV, Osipov AF, Pietsch S, Playfair M, Poulsen J, Radchenko VG, Rodney K, Rozak AH, Ruschel A, Rutishauser E, See L, Shchepashchenko M, Shevchenko N, Shvidenko A, Silveira M, Singh J, Sonké B, Souza C, Stereńczak K, Stonozhenko L, Sullivan MJP, Szatniewska J, Taedoumg H, Ter Steege H, Tikhonova E, Toledo M, Trefilova OV, Valbuena R, Gamarra LV, Vasiliev S, Vedrova EF, Verhovets SV, Vidal E, Vladimirova NA, Vleminckx J, Vos VA, Vozmitel FK, Wanek W, West TAP, Woell H, Woods JT, Wortel V, Yamada T, Nur Hajar ZS, and Zo-Bi IC
- Subjects
- Conservation of Natural Resources, Environmental Monitoring methods, Biomass, Forests, Remote Sensing Technology
- Abstract
Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
- Published
- 2019
- Full Text
- View/download PDF
29. The persistence of carbon in the African forest understory.
- Author
-
Hubau W, De Mil T, Van den Bulcke J, Phillips OL, Angoboy Ilondea B, Van Acker J, Sullivan MJP, Nsenga L, Toirambe B, Couralet C, Banin LF, Begne SK, Baker TR, Bourland N, Chezeaux E, Clark CJ, Collins M, Comiskey JA, Cuni-Sanchez A, Deklerck V, Dierickx S, Doucet JL, Ewango CEN, Feldpausch TR, Gilpin M, Gonmadje C, Hall JS, Harris DJ, Hardy OJ, Kamdem MD, Kasongo Yakusu E, Lopez-Gonzalez G, Makana JR, Malhi Y, Mbayu FM, Moore S, Mukinzi J, Pickavance G, Poulsen JR, Reitsma J, Rousseau M, Sonké B, Sunderland T, Taedoumg H, Talbot J, Tshibamba Mukendi J, Umunay PM, Vleminckx J, White LJT, Zemagho L, Lewis SL, and Beeckman H
- Subjects
- Carbon Cycle, Democratic Republic of the Congo, Time Factors, Trees growth & development, Tropical Climate, Carbon analysis, Carbon Sequestration, Forests, Trees physiology
- Abstract
Quantifying carbon dynamics in forests is critical for understanding their role in long-term climate regulation
1-4 . Yet little is known about tree longevity in tropical forests3,5-8 , a factor that is vital for estimating carbon persistence3,4 . Here we calculate mean carbon age (the period that carbon is fixed in trees7 ) in different strata of African tropical forests using (1) growth-ring records with a unique timestamp accurately demarcating 66 years of growth in one site and (2) measurements of diameter increments from the African Tropical Rainforest Observation Network (23 sites). We find that in spite of their much smaller size, in understory trees mean carbon age (74 years) is greater than in sub-canopy (54 years) and canopy (57 years) trees and similar to carbon age in emergent trees (66 years). The remarkable carbon longevity in the understory results from slow and aperiodic growth as an adaptation to limited resource availability9-11 . Our analysis also reveals that while the understory represents a small share (11%) of the carbon stock12,13 , it contributes disproportionally to the forest carbon sink (20%). We conclude that accounting for the diversity of carbon age and carbon sequestration among different forest strata is critical for effective conservation management14-16 and for accurate modelling of carbon cycling4 .- Published
- 2019
- Full Text
- View/download PDF
30. Craterispermum capitatum and C. gabonicum (Rubiaceae): two new species from the Lower Guinean and Congolian Domains.
- Author
-
Taedoumg H, Sonke B, Hamon P, and Block P
- Abstract
Craterispermum capitatum and C. gabonicum , two new species of Rubiaceae, are described from the Lower Guinea and Congolian Domains. Detailed descriptions and distribution maps are provided for each species, their conservation status is assessed and their taxonomic affinities are discussed. Craterispermum gabonicum is unique within the genus because of the strong dimorphism in brevistylous and longistylous flowers and inflorescences. We hypothesize that this species shows some form of dioecy. The distribution of C. capitatum shows a wide disjunction: the species is present in the Lower Guinean and Congolian Domains but absent from Gabon and South Cameroon. An identification key for the Craterispermum species present in the Lower Guinean and Congolian Domains is given.
- Published
- 2017
- Full Text
- View/download PDF
31. Diversity and carbon storage across the tropical forest biome.
- Author
-
Sullivan MJ, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK, Chave J, Cuni-Sanchez A, Hubau W, Lopez-Gonzalez G, Miles L, Monteagudo-Mendoza A, Sonké B, Sunderland T, Ter Steege H, White LJ, Affum-Baffoe K, Aiba SI, de Almeida EC, de Oliveira EA, Alvarez-Loayza P, Dávila EÁ, Andrade A, Aragão LE, Ashton P, Aymard C GA, Baker TR, Balinga M, Banin LF, Baraloto C, Bastin JF, Berry N, Bogaert J, Bonal D, Bongers F, Brienen R, Camargo JL, Cerón C, Moscoso VC, Chezeaux E, Clark CJ, Pacheco ÁC, Comiskey JA, Valverde FC, Coronado EN, Dargie G, Davies SJ, De Canniere C, Djuikouo K MN, Doucet JL, Erwin TL, Espejo JS, Ewango CE, Fauset S, Feldpausch TR, Herrera R, Gilpin M, Gloor E, Hall JS, Harris DJ, Hart TB, Kartawinata K, Kho LK, Kitayama K, Laurance SG, Laurance WF, Leal ME, Lovejoy T, Lovett JC, Lukasu FM, Makana JR, Malhi Y, Maracahipes L, Marimon BS, Junior BH, Marshall AR, Morandi PS, Mukendi JT, Mukinzi J, Nilus R, Vargas PN, Camacho NC, Pardo G, Peña-Claros M, Pétronelli P, Pickavance GC, Poulsen AD, Poulsen JR, Primack RB, Priyadi H, Quesada CA, Reitsma J, Réjou-Méchain M, Restrepo Z, Rutishauser E, Salim KA, Salomão RP, Samsoedin I, Sheil D, Sierra R, Silveira M, Slik JW, Steel L, Taedoumg H, Tan S, Terborgh JW, Thomas SC, Toledo M, Umunay PM, Gamarra LV, Vieira IC, Vos VA, Wang O, Willcock S, and Zemagho L
- Subjects
- Africa, Americas, Asia, Tropical Climate, Biodiversity, Carbon analysis, Forests, Plants chemistry, Plants classification
- Abstract
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.
- Published
- 2017
- Full Text
- View/download PDF
32. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon.
- Author
-
Domingues TF, Ishida FY, Feldpausch TR, Grace J, Meir P, Saiz G, Sene O, Schrodt F, Sonké B, Taedoumg H, Veenendaal EM, Lewis S, and Lloyd J
- Subjects
- Africa, Biodiversity, Cameroon, Ecosystem, Electron Transport, Plant Leaves metabolism, Plant Leaves physiology, Ribulose-Bisphosphate Carboxylase metabolism, Species Specificity, Trees physiology, Tropical Climate, Forests, Grassland, Nitrogen metabolism, Phosphorus metabolism, Photosynthesis, Trees metabolism
- Abstract
Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were-on average-slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.
- Published
- 2015
- Full Text
- View/download PDF
33. Mixed-forest species establishment in a monodominant forest in central Africa: implications for tropical forest invasibility.
- Author
-
Peh KS, Sonké B, Séné O, Djuikouo MN, Nguembou CK, Taedoumg H, Begne SK, and Lewis SL
- Subjects
- Cameroon, Introduced Species, Biodiversity, Fabaceae physiology, Forests
- Abstract
Background: Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest., Methodology/principal Findings: We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement-revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement., Conclusions/significance: Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.