1. Représentations modulo l des groupes p-adiques SL_n(F)
- Author
-
Cui, Peiyi, Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université Rennes 1, Michel Gros, and Anne-Marie Aubert
- Subjects
Représentations modulo l ,Support supercuspidal ,Supercuspidal support ,P-Adic special linear groups ,Modular l representations ,Bushnell-Kutzko types ,Groupes spéciaux linéaires p-Adiques ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,Types de Bushnell-Kutzko - Abstract
Fix a prime number p. Let k be an algebraically closed field of characteristic l different than p. We construct maximal simple cuspidal k-types of Levi subgroups M' of SL_n(F), where F is a non-archimedean locally compact field of residual characteristic p. And we show that the supercuspidal support of irreducible smooth k-representations of Levi subgroups M' of SL_n(F) is unique up to M'-conjugation, when F is either a finite field of characteristic p or a non-archimedean locally compact field of residual characteristic p.; Fixons un nombre premier p. Soit k un corps algébriquement clos de caractéristique l différent que p. Nous construisons les k-types maximaux simples cuspidaux des sous-groupes de Levi M' de SL_n(F), où F est un corps local non archimédien de caractéristique résiduelle p. Nous montrons que le support supercuspidal des k-représentations lisses irréductibles de M' est unique à M'-conjugaison près, quand F est soit un corps fini de caractéristique p soit un corps local non-archimédien de caractéristique résiduelle p.
- Published
- 2019