1. Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs.
- Author
-
Gurunathan R, Huang B, Ponnusamy VK, Hwang JS, and Dahms HU
- Subjects
- Animals, Aquatic Organisms, Bacillus cereus chemistry, Bacillus cereus isolation & purification, Bacterial Proteins chemistry, Bacterial Proteins genetics, Bacterial Proteins isolation & purification, Brachyura microbiology, Chickens, Cloning, Molecular, Enzyme Stability, Escherichia coli genetics, Escherichia coli metabolism, Feathers chemistry, Gene Expression, Genetic Vectors chemistry, Genetic Vectors metabolism, Hot Temperature, Hydrogen-Ion Concentration, Hydrothermal Vents microbiology, Models, Molecular, Pacific Ocean, Protein Conformation, Proteolysis, Recombinant Proteins chemistry, Recombinant Proteins genetics, Recombinant Proteins isolation & purification, Recombinant Proteins metabolism, Serine Proteases chemistry, Serine Proteases genetics, Serine Proteases isolation & purification, Substrate Specificity, Subtilisins chemistry, Subtilisins genetics, Subtilisins isolation & purification, Bacillus cereus enzymology, Bacterial Proteins metabolism, Keratins metabolism, Serine Proteases metabolism, Subtilisins metabolism
- Abstract
Microbial secondary metabolites from extreme environments like hydrothermal vents are a promising source for industrial applications. In our study the protease gene from Bacillus cereus obtained from shallow marine hydrothermal vents in the East China Sea was cloned, expressed and purified. The protein sequence of 38 kDa protease SLSP-k was retrieved from mass spectrometry and identified as a subtilisin serine proteinase. The novel SLSP-k is a monomeric protein with 38 amino acid signal peptides being active over wide pH (7-11) and temperature (40-80 °C) ranges, with maximal hydrolytic activities at pH 10 and at 50 °C temperature. The hydrolytic activity is stimulated by Ca
2+ , Co2+ , Mn2+ , and DTT. It is inhibited by Fe2+ , Cd2+ , Cu2+ , EDTA, and PMSF. The SLSP-k is stable in anionic, non-anionic detergents, and solvents. The ability to degrade keratin in chicken feather and hair indicates that this enzyme is suitable for the degradation of poultry waste without the loss of nutritionally essential amino acids which otherwise are lost in hydrothermal processing. Therefore, the proteinase is efficient in environmental friendly bioconversion of animal waste into fertilizers or value added products such as secondary animal feedstuffs.- Published
- 2021
- Full Text
- View/download PDF