119 results on '"Stella, Pietro"'
Search Results
2. A neonatal cluster of novel coronavirus disease 2019: clinical management and considerations
- Author
-
Olivini, Nicole, Calò Carducci, Francesca Ippolita, Santilli, Veronica, De Ioris, Maria Antonietta, Scarselli, Alessia, Alario, Dario, Geremia, Caterina, Lombardi, Mary Haywood, Marabotto, Caterina, Mariani, Rosanna, Papa, Raffaele Edo, Peschiaroli, Emanuela, Scrocca, Raffaella, Sinibaldi, Serena, Smarrazzo, Andrea, Stella, Pietro, Bernardi, Stefania, Chiurchiù, Sara, Pansa, Paola, Romani, Lorenza, Michaela, Carletti, Concato, Carlo, De Rose, Domenico Umberto, Salvatori, Gugliemo, Rossi, Paolo, Villani, Alberto, Dotta, Andrea, D’Argenio, Patrizia, and Campana, Andrea
- Published
- 2020
- Full Text
- View/download PDF
3. Transmission of antimicrobial resistance (AMR) during animal transport
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Álvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Argüello-Rodríguez, Héctor, Dohmen, Wietske, Francesca Magistrali, Chiara, Padalino, Barbara, Tenhagen, Bernd-Alois, Threlfall, John, García-Fierro, Raquel, Guerra, Beatriz, Liébana, Ernesto, Stella, Pietro, Peixe, Luisa, Indústries Alimentàries, Funcionalitat i Seguretat Alimentària, Koutsoumanis, K, Allende, A, Alvarez-Ordonez, A, Bolton, D, Bover-Cid, S, Chemaly, M, Davies, R, De Cesare, A, Herman, L, Hilbert, F, Lindqvist, R, Nauta, M, Ru, G, Simmons, M, Skandamis, P, Suffredini, E, Arguello-Rodriguez, H, Dohmen, W, Magistrali, CF, Padalino, B, Tenhagen, BA, Threlfall, J, Garcia-Fierro, R, Guerra, B, Liebana, E, Stella, P, and Peixe, L
- Subjects
663/664 ,Veterinary (miscellaneous) ,data gaps ,food-producing animals ,Plant Science ,mitigation option ,Microbiology ,antimicrobial-resistant bacteria (ARB) ,lairage ,food-producing animal ,research needs ,risk factor ,mitigation options ,veterinary (miscalleneous) ,data gap ,risk factors ,Animal Science and Zoology ,Parasitology ,antimicrobial resistance genes (ARGs) ,Food Science - Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys ( 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs. info:eu-repo/semantics/publishedVersion
- Published
- 2022
4. ROMA E UTRECHT: DAL DISSIDIO ALLA ROTTURA (XVIII-XIX SEC.) APPUNTI PER UNA RILETTURA STORIOGRAFICA
- Author
-
Stella, Pietro
- Published
- 2011
5. IL GIANSENISMO IN ITALIA
- Author
-
Stella, Pietro
- Published
- 2007
6. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 9: Polymyxins: colistin
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I., Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Indústries Alimentàries, Funcionalitat i Seguretat Alimentària, Koutsoumanis K., Allende A., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., and Peixe L.
- Subjects
663/664 ,medicine.drug_class ,Veterinary (miscellaneous) ,Polymyxin ,Growth promotion ,TP1-1185 ,Plant Science ,Biology ,Microbiology ,Non target ,Antibiotic resistance ,growth promotion ,medicine ,TX341-641 ,antimicrobial resistance ,colistin ,yield increase ,Animal health ,Nutrition. Foods and food supply ,business.industry ,Chemical technology ,sub-inhibitory concentration ,sub‐inhibitory concentration ,Contamination ,Feed Antimicrobial Resistance Selection Concentration (FARSC) ,Antimicrobial ,food-producing animal ,Biotechnology ,Colistin ,Animal Science and Zoology ,Parasitology ,business ,Food Science ,medicine.drug - Abstract
The specific concentrations of colistin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of colistin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials. info:eu-repo/semantics/publishedVersion
- Published
- 2021
7. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 13: Diaminopyrimidines: trimethoprim
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I., Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Indústries Alimentàries, Funcionalitat i Seguretat Alimentària, Koutsoumanis K., Allende A., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., and Peixe L.
- Subjects
Complete data ,663/664 ,Veterinary (miscellaneous) ,Growth promotion ,TP1-1185 ,Plant Science ,Biology ,Microbiology ,Trimethoprim ,Non target ,Antibiotic resistance ,growth promotion ,medicine ,TX341-641 ,antimicrobial resistance ,yield increase ,Animal health ,Nutrition. Foods and food supply ,business.industry ,Chemical technology ,sub-inhibitory concentration ,food-producing animals ,Biol5012 ,food‐producing animals ,sub‐inhibitory concentration ,Contamination ,Feed Antimicrobial Resistance Selection Concentration (FARSC) ,Antimicrobial ,food-producing animal ,Biotechnology ,Scientific Opinion ,Animal Science and Zoology ,Parasitology ,business ,Food Science ,medicine.drug - Abstract
The specific concentrations of trimethoprim in non-target feed for food-producing animals below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for trimethoprim was estimated. Uncertainties and data gaps associated to the levels reported were addressed. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. No suitable data for the assessment were available. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for trimethoprim. info:eu-repo/semantics/publishedVersion
- Published
- 2021
8. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Indústries Alimentàries, Funcionalitat i Seguretat Alimentària, Koutsoumanis K., Allende A., Alvarez-Ordonez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., and Peixe L.
- Subjects
Chlortetracycline ,663/664 ,Tetracycline ,Veterinary (miscellaneous) ,Growth promotion ,TP1-1185 ,Plant Science ,Oxytetracycline ,Biology ,Microbiology ,Antibiotic resistance ,growth promotion ,medicine ,TX341-641 ,antimicrobial resistance ,Food science ,chlortetracycline ,tetracycline ,Doxycycline ,doxycycline ,Nutrition. Foods and food supply ,Chemical technology ,food-producing animals ,Contamination ,Antimicrobial ,food-producing animal ,Animal Science and Zoology ,Parasitology ,oxytetracycline ,Food Science ,medicine.drug - Abstract
The specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobials. info:eu-repo/semantics/publishedVersion
- Published
- 2021
9. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 10: Quinolones: flumequine and oxolinic acid
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Koutsoumanis K., Allende A., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., Peixe L., Indústries Alimentàries, and Funcionalitat i Seguretat Alimentària
- Subjects
663/664 ,Veterinary (miscellaneous) ,Growth promotion ,flumequine ,TP1-1185 ,Plant Science ,Microbiology ,Non target ,Antibiotic resistance ,growth promotion ,oxolinic acid ,Oxolinic acid ,medicine ,TX341-641 ,Food science ,antimicrobial resistance ,Food8822 ,yield increase ,Animal health ,Nutrition. Foods and food supply ,Chemical technology ,sub-inhibitory concentration ,food-producing animals ,food‐producing animals ,Contamination ,sub‐inhibitory concentration ,Antimicrobial ,food-producing animal ,Scientific Opinion ,Flumequine ,Environmental science ,Animal Science and Zoology ,Parasitology ,Food Science ,medicine.drug - Abstract
The specific concentrations of flumequine and oxolinic acid in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. No suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials. info:eu-repo/semantics/publishedVersion
- Published
- 2021
10. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 4: β‐Lactams: amoxicillin and penicillin V
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Indústries Alimentàries, Funcionalitat i Seguretat Alimentària, Koutso111umanis K., Allende A., Alvarez-Ordonez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., and Peixe L.
- Subjects
663/664 ,Veterinary (miscellaneous) ,Growth promotion ,TP1-1185 ,Plant Science ,Biology ,Microbiology ,Antibiotic resistance ,Non target ,growth promotion ,β lactams ,medicine ,TX341-641 ,antimicrobial resistance ,Food science ,yield increase ,amoxicillin ,Nutrition. Foods and food supply ,sub-inhibitory concentration ,Chemical technology ,food-producing animals ,Biol5012 ,food‐producing animals ,sub‐inhibitory concentration ,Contamination ,Amoxicillin ,penicillin V ,Antimicrobial ,food-producing animal ,Penicillin ,Scientific Opinion ,Animal Science and Zoology ,Parasitology ,Food Science ,medicine.drug - Abstract
The specific concentrations of amoxicillin and penicillin V in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for amoxicillin, whilst for penicillin V no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials. info:eu-repo/semantics/publishedVersion
- Published
- 2021
11. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 6: Macrolides: tilmicosin, tylosin and tylvalosin
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Koutsoumanis K., Allende A., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., Peixe L., Indústries Alimentàries, and Funcionalitat i Seguretat Alimentària
- Subjects
663/664 ,Veterinary (miscellaneous) ,Growth promotion ,TP1-1185 ,Plant Science ,Tylosin ,Biology ,tilmicosin ,Microbiology ,chemistry.chemical_compound ,Antibiotic resistance ,Non target ,growth promotion ,TX341-641 ,antimicrobial resistance ,Food science ,Tilmicosin ,yield increase ,tylosin ,Nutrition. Foods and food supply ,Chemical technology ,food-producing animals ,tylvalosin ,Contamination ,Antimicrobial ,food-producing animal ,chemistry ,Animal Science and Zoology ,Parasitology ,Tylvalosin ,Food Science - Abstract
The specific concentrations of tilmicosin, tylosin and tylvalosin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tilmicosin and tylosin, whilst for tylvalosin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these three antimicrobials. info:eu-repo/semantics/publishedVersion
- Published
- 2021
12. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 11: Sulfonamides
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I., Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Koutsoumanis K., Allende A., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., Peixe L., Indústries Alimentàries, and Funcionalitat i Seguretat Alimentària
- Subjects
Sulfamerazine ,663/664 ,Veterinary (miscellaneous) ,Growth promotion ,TP1-1185 ,Plant Science ,Sulfonamide ,Microbiology ,Antibiotic resistance ,Non target ,growth promotion ,medicine ,TX341-641 ,antimicrobial resistance ,Food science ,yield increase ,Sulfonamides ,Animal health ,Nutrition. Foods and food supply ,Chemical technology ,sub-inhibitory concentration ,food‐producing animals ,food-producing animals ,sub‐inhibitory concentration ,Contamination ,Antimicrobial ,food-producing animal ,Sulfathiazole ,Environmental science ,Animal Science and Zoology ,Parasitology ,Food Science ,medicine.drug - Abstract
The specific concentrations of sulfonamides in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were identified for three sulfonamides: sulfamethazine, sulfathiazole and sulfamerazine. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials. info:eu-repo/semantics/publishedVersion
- Published
- 2021
13. FILOEBRAISMO CATTOLICO IN PIEMONTE E IN LOMBARDIA DALLA RIVOLUZIONE FRANCESE AL CASO DREYFUS
- Author
-
Stella, Pietro
- Published
- 2004
14. LA COMPAGNIA DI GESÙ IN ITALIA IN ETÀ CONTEMPORANEA. A PROPOSITO DEL LIBRO DI GIACOMO MARTINA
- Author
-
Veneruso, Danilo, Malusa, Luciano, Varnier, Giovanni Battista, and Stella, Pietro
- Published
- 2003
15. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 5: Lincosamides: lincomycin
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Indústries Alimentàries, Funcionalitat i Seguretat Alimentària, Koutsoumanis K., Allende A., Alvarez-Ordonez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., and Peixe L.
- Subjects
663/664 ,medicine.drug_class ,Veterinary (miscellaneous) ,Growth promotion ,Plant Science ,TP1-1185 ,Biology ,Microbiology ,Antibiotic resistance ,Non target ,growth promotion ,medicine ,TX341-641 ,Food science ,antimicrobial resistance ,yield increase ,Lincosamides ,Animal health ,Nutrition. Foods and food supply ,sub-inhibitory concentration ,Chemical technology ,Biol5012 ,food‐producing animals ,food-producing animals ,Contamination ,sub‐inhibitory concentration ,Antimicrobial ,Feed Antimicrobial Resistance Selection Concentration (FARSC) ,food-producing animal ,Lincomycin ,Scientific Opinion ,Animal Science and Zoology ,Parasitology ,lincomycin ,Food Science ,medicine.drug - Abstract
The specific concentrations of lincomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of lincomycin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for lincomycin. info:eu-repo/semantics/publishedVersion
- Published
- 2021
16. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 2: Aminoglycosides/aminocyclitols: apramycin, paromomycin, neomycin and spectinomycin
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Allende, Ana, Koutsoumanis, Konstantinos, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Allende A., Koutsoumanis K., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., Peixe L., Indústries Alimentàries, and Funcionalitat i Seguretat Alimentària
- Subjects
Spectinomycin ,663/664 ,spectinomycin ,Veterinary (miscellaneous) ,Growth promotion ,Paromomycin ,TP1-1185 ,Plant Science ,Biology ,Apramycin ,Microbiology ,Antibiotic resistance ,growth promotion ,medicine ,TX341-641 ,Food science ,antimicrobial resistance ,Nutrition. Foods and food supply ,Chemical technology ,neomycin ,food-producing animals ,Neomycin ,Contamination ,Antimicrobial ,food-producing animal ,Animal Science and Zoology ,Parasitology ,paromomycin ,Food Science ,medicine.drug ,apramycin - Abstract
The specific concentrations of apramycin, paromomycin, neomycin and spectinomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for these antimicrobials, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for apramycin and neomycin, whilst for paromomycin and spectinomycin, no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these four antimicrobials. info:eu-repo/semantics/publishedVersion
- Published
- 2021
17. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 3: Amprolium
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Koutsoumanis K., Allende A., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Andersson D.I., Bampidis V., Bengtsson-Palme J., Bouchard D., Ferran A., Kouba M., Lopez Puente S., Lopez-Alonso M., Nielsen S.S., Pechova A., Petkova M., Girault S., Broglia A., Guerra B., Innocenti M.L., Liebana E., Lopez-Galvez G., Manini P., Stella P., Peixe L., Indústries Alimentàries, and Funcionalitat i Seguretat Alimentària
- Subjects
663/664 ,Veterinary (miscellaneous) ,Growth promotion ,TP1-1185 ,Plant Science ,Biology ,Microbiology ,chemistry.chemical_compound ,Antibiotic resistance ,Non target ,Amprolium ,growth promotion ,TX341-641 ,Food science ,antimicrobial resistance ,yield increase ,Animal health ,Nutrition. Foods and food supply ,Chemical technology ,Biol5012 ,food‐producing animals ,food-producing animals ,Feed Antimicrobial Resistance Selection Concentration (FARSC), growth promotion ,Contamination ,Antimicrobial ,Feed Antimicrobial Resistance Selection Concentration (FARSC) ,food-producing animal ,Scientific Opinion ,subinhibitory concentration ,chemistry ,Animal Science and Zoology ,Parasitology ,Food Science ,amprolium - Abstract
The specific concentrations of amprolium in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for amprolium, it was not possible to conclude the assessment. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of amprolium in feed that showed to have an effect on growth promotion/increased yield were reported. The lack of antibacterial activity at clinically relevant concentrations for amprolium suggests that further studies relating to bacterial resistance are not a priority. info:eu-repo/semantics/publishedVersion
- Published
- 2021
18. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 7:Amphenicols: florfenicol and thiamphenicol
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, and Peixe, Luisa
- Abstract
The specific concentrations of florfenicol and thiamphenicol in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for florfenicol was estimated. However, due to the lack of data, the calculation of the FARSC for thiamphenicol was not possible until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for florfenicol, whilst for thiamphenicol no suitable data for the assessment were available. Uncertainties and data gaps associated to the levels reported were addressed. For florfenicol, it was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC, whereas for thiamphenicol, the recommendation was to generate the data required to fill the gaps which prevented the FARSC calculation.
- Published
- 2021
19. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 1: Methodology, general data gaps and uncertainties
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, and Peixe, Luisa
- Abstract
The European Commission requested EFSA to assess, in collaboration with EMA, the specific concentrations of antimicrobials resulting from cross-contamination in non-target feed for food-producing animals below which there would not be an effect on the emergence of, and/or selection for, resistance in microbial agents relevant for human and animal health, as well as the levels of the antimicrobials which could have a growth promotion/increase yield effect. The assessment was performed for 24 antimicrobial active substances, as specified in the mandate. This scientific opinion describes the methodology used, and the main associated data gaps and uncertainties. To estimate the antimicrobial levels in the non-target feed that would not result in emergence of, and/or selection for, resistance, a model was developed. This ‘Feed Antimicrobial Resistance Selection Concentration’ (FARSC) model is based on the minimal selective concentration (MSC), or the predicted MSC (PMSC) if MSC for the most susceptible bacterial species is unavailable, the fraction of antimicrobial dose available for exposure to microorganisms in the large intestine or rumen (considering pharmacokinetic parameters), the daily faecal output or rumen volume and the daily feed intake. Currently, lack of data prevents the establishment of PMSC and/or FARSC for several antimicrobials and animal species. To address growth promotion, data from an extensive literature search were used. Specific assessments of the different substances grouped by antimicrobial classes are addressed in separate scientific opinions. General conclusions and recommendations were made.
- Published
- 2021
20. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 8::Pleuromutilins: tiamulin and valnemulin
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Alvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson-Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López-Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López-Gálvez, Gloria, Manini, Paola, Stella, Pietro, and Peixe, Luisa
- Abstract
The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.
- Published
- 2021
21. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain
- Author
-
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, Konstantinos, Allende, Ana, Álvarez-Ordóñez, Avelino, Bolton, Declan, Bover-Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Argüello, Héctor, Berendonk, Thomas, Cavaco, Lina Maria, Gaze, William, Schmitt, Heike, Topp, Ed, Guerra, Beatriz, Liébana, Ernesto, Stella, Pietro, Peixe, Luisa, Indústries Alimentàries, Funcionalitat i Seguretat Alimentària, Koutsoumanis K., Allende A., Alvarez-Ordonez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., Nauta M., Ru G., Simmons M., Skandamis P., Suffredini E., Arguello H., Berendonk T., Cavaco L.M., Gaze W., Schmitt H., Topp E., Guerra B., Liebana E., Stella P., and Peixe L.
- Subjects
663/664 ,040301 veterinary sciences ,Veterinary (miscellaneous) ,Biosecurity ,TP1-1185 ,Plant Science ,010501 environmental sciences ,Terrestrial animal ,medicine.disease_cause ,01 natural sciences ,Microbiology ,Anim2953 ,0403 veterinary science ,Food chain ,Antibiotic resistance ,medicine ,TX341-641 ,animal ,antimicrobial resistance ,0105 earth and related environmental sciences ,food‐producing environment ,biology ,Nutrition. Foods and food supply ,business.industry ,plants ,Chemical technology ,Campylobacter ,food ,04 agricultural and veterinary sciences ,biochemical phenomena, metabolism, and nutrition ,biology.organism_classification ,Manure ,antimicrobial‐resistant bacteria ,Biotechnology ,animals ,Scientific Opinion ,antimicrobial resistance gene ,One Health ,aquaculture ,veterinary (miscalleneous) ,Food processing ,Parasitology ,Animal Science and Zoology ,business ,antimicrobial-resistant bacteria ,environment ,food-producing environment ,antimicrobial resistance genes ,Food Science - Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs blaCTX-M, blaVIM, blaNDM, blaOXA-48-like, blaOXA-23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required. info:eu-repo/semantics/publishedVersion
- Published
- 2021
22. Scientific report on the analysis of the 2-year compulsory intensified monitoring of atypical scrapie.
- Author
-
Arnold, Mark, Giuseppe Ru, Simmons, Marion, Vidal-Diez, Alberto, Ortiz-Pelaez, Angel, and Stella, Pietro
- Subjects
SCRAPIE ,TECHNICAL reports ,SHEEP farming ,COMMUNICABLE diseases ,KNOWLEDGE gap theory ,GOATS - Abstract
The European Commission asked EFSA whether the scientific data on the 2-year intensified monitoring in atypical scrapie (AS) outbreaks (2013-2020) provide any evidence on the contagiousness of AS, and whether they added any new knowledge on the epidemiology of AS. An ad hoc data set from intensified monitoring in 22 countries with index case/s of AS in sheep and/or goats (742 flocks from 20 countries, 76 herds from 11 countries) was analysed. No secondary cases were confirmed in goat herds, while 35 secondary cases were confirmed in 28 sheep flocks from eight countries. The results of the calculated design prevalence and of a model simulation indicated that the intensified monitoring had limited ability to detect AS, with no difference between countries with or without secondary cases. A regression model showed an increased, but not statistically significant, prevalence (adjusted by surveillance stream) of secondary cases in infected flocks compared with that of index cases in the non-infected flocks (general population). A simulation model of within-flock transmission, comparing a contagious (i.e. transmissible between animals under natural conditions) with a non-contagious scenario, produced a better fit of the observed data with the non-contagious scenario, in which each sheep in a flock had the same probability of developing AS in the first year of life. Based on the analyses performed, and considering uncertainties and data limitations, it was concluded that there is no new evidence that AS can be transmitted between animals under natural conditions, and it is considered more likely (subjective probability range 50-66%) that AS is a non-contagious, rather than a contagious disease. The analysis of the data of the EU intensified monitoring in atypical scrapie infected flocks/herds confirmed some of the known epidemiological features of AS but identified that major knowledge gaps still remain. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
23. Advancing biological hazards risk assessment
- Author
-
Messens, Winy, primary, Hugas, Marta, additional, Afonso, Ana, additional, Aguilera, Jaime, additional, Berendonk, Thomas U, additional, Carattoli, Alessandra, additional, Dhollander, Sofie, additional, Gerner‐Smidt, Peter, additional, Kriz, Nikolaus, additional, Liebana, Ernesto, additional, Medlock, Jolyon, additional, Robinson, Tobin, additional, Stella, Pietro, additional, Waltner‐Toews, David, additional, and Catchpole, Mike, additional
- Published
- 2019
- Full Text
- View/download PDF
24. Scientific opinion on chronic wasting disease (II)
- Author
-
UCL - SSS/IRSS - Institut de recherche santé et société, Ricci, Antonia, Allende, Ana, Bolton, Declan, Chemaly, Marianne, Davies, Robert, Fernández Escámez, Pablo Salvador, Gironés, Rosina, Herman, Lieve, Koutsoumanis, Kostas, Lindqvist, Roland, Nørrung, Birgit, Robertson, Lucy, Ru, Giuseppe, Sanaa, Moez, Skandamis, Panagiotis, Snary, Emma, Speybroeck, Niko, Kuile, Benno Ter, Threlfall, John, Wahlström, Helene, Benestad, Sylvie, Gavier‐Widen, Dolores, Miller, Michael W, Telling, Glenn C, Tryland, Morten, Latronico, Francesca, Ortiz‐Pelaez, Angel, Stella, Pietro, Simmons, Marion, UCL - SSS/IRSS - Institut de recherche santé et société, Ricci, Antonia, Allende, Ana, Bolton, Declan, Chemaly, Marianne, Davies, Robert, Fernández Escámez, Pablo Salvador, Gironés, Rosina, Herman, Lieve, Koutsoumanis, Kostas, Lindqvist, Roland, Nørrung, Birgit, Robertson, Lucy, Ru, Giuseppe, Sanaa, Moez, Skandamis, Panagiotis, Snary, Emma, Speybroeck, Niko, Kuile, Benno Ter, Threlfall, John, Wahlström, Helene, Benestad, Sylvie, Gavier‐Widen, Dolores, Miller, Michael W, Telling, Glenn C, Tryland, Morten, Latronico, Francesca, Ortiz‐Pelaez, Angel, Stella, Pietro, and Simmons, Marion
- Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, ‘are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided’, and ‘update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union’. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
- Published
- 2018
25. Challenges and prospects of the European Food Safety Authority biological hazards risk assessments for food safety
- Author
-
Latronico, Francesca, primary, Correia, Sandra, additional, Felicio, Teresa da Silva, additional, Hempen, Michaela, additional, Messens, Winy, additional, Ortiz-Pelaez, Angel, additional, Stella, Pietro, additional, Liebana, Ernesto, additional, and Hugas, Marta, additional
- Published
- 2017
- Full Text
- View/download PDF
26. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA)
- Author
-
UCL - SSS/IRSS - Institut de recherche santé et société, EMA Committee for Medicinal Products for Veterinary Use (CVMP), EFSA Panel on Biological Hazards (BIOHAZ), Murphy, David, Ricci, Antonia, Auce, Zanda, Beechinor, J. Gabriel, Bergendahl, Hanne, Breathnach, Rory, Bureš, Jiří, Duarte Da Silva, João Pedro, Hederová, Judita, Hekman, Peter, Ibrahim, Cornelia, Kozhuharov, Emil, Kulcsár, Gábor, Lander Persson, Eva, Lenhardsson, Johann M., Mačiulskis, Petras, Malemis, Ioannis, Markus‐Cizelj, Ljiljana, Michaelidou‐Patsia, Alia, Nevalainen, Martti, Pasquali, Paolo, Rouby, Jean‐Claude, Schefferlie, Johan, Schlumbohm, Wilhelm, Schmit, Marc, Spiteri, Stephen, Srčič, Stanko, Taban, Lollita, Tiirats, Toomas, Urbain, Bruno, Vestergaard, Ellen‐Margrethe, Wachnik‐Święcicka, Anna, Weeks, Jason, Zemann, Barbara, Allende, Ana, Bolton, Declan, Chemaly, Marianne, Fernandez Escamez, Pablo Salvador, Girones, Rosina, Herman, Lieve, Koutsoumanis, Kostas, Lindqvist, Roland, Nørrung, Birgit, Robertson, Lucy, Ru, Giuseppe, Sanaa, Moez, Simmons, Marion, Skandamis, Panagiotis, Snary, Emma, Speybroeck, Niko, Ter Kuile, Benno, Wahlström, Helene, Baptiste, Keith, Catry, Boudewijn, Cocconcelli, Pier Sandro, Davies, Robert, Ducrot, Christian, Friis, Christian, Jungersen, Gregers, More, Simon, Muñoz Madero, Cristina, Sanders, Pascal, Bos, Marian, Kunsagi, Zoltan, Torren Edo, Jordi, Brozzi, Rosella, Candiani, Denise, Guerra, Beatriz, Liebana, Ernesto, Stella, Pietro, Threlfall, John, Jukes, Helen, UCL - SSS/IRSS - Institut de recherche santé et société, EMA Committee for Medicinal Products for Veterinary Use (CVMP), EFSA Panel on Biological Hazards (BIOHAZ), Murphy, David, Ricci, Antonia, Auce, Zanda, Beechinor, J. Gabriel, Bergendahl, Hanne, Breathnach, Rory, Bureš, Jiří, Duarte Da Silva, João Pedro, Hederová, Judita, Hekman, Peter, Ibrahim, Cornelia, Kozhuharov, Emil, Kulcsár, Gábor, Lander Persson, Eva, Lenhardsson, Johann M., Mačiulskis, Petras, Malemis, Ioannis, Markus‐Cizelj, Ljiljana, Michaelidou‐Patsia, Alia, Nevalainen, Martti, Pasquali, Paolo, Rouby, Jean‐Claude, Schefferlie, Johan, Schlumbohm, Wilhelm, Schmit, Marc, Spiteri, Stephen, Srčič, Stanko, Taban, Lollita, Tiirats, Toomas, Urbain, Bruno, Vestergaard, Ellen‐Margrethe, Wachnik‐Święcicka, Anna, Weeks, Jason, Zemann, Barbara, Allende, Ana, Bolton, Declan, Chemaly, Marianne, Fernandez Escamez, Pablo Salvador, Girones, Rosina, Herman, Lieve, Koutsoumanis, Kostas, Lindqvist, Roland, Nørrung, Birgit, Robertson, Lucy, Ru, Giuseppe, Sanaa, Moez, Simmons, Marion, Skandamis, Panagiotis, Snary, Emma, Speybroeck, Niko, Ter Kuile, Benno, Wahlström, Helene, Baptiste, Keith, Catry, Boudewijn, Cocconcelli, Pier Sandro, Davies, Robert, Ducrot, Christian, Friis, Christian, Jungersen, Gregers, More, Simon, Muñoz Madero, Cristina, Sanders, Pascal, Bos, Marian, Kunsagi, Zoltan, Torren Edo, Jordi, Brozzi, Rosella, Candiani, Denise, Guerra, Beatriz, Liebana, Ernesto, Stella, Pietro, Threlfall, John, and Jukes, Helen
- Abstract
EFSA and EMA have jointly reviewed measures taken in the EU to reduce the need for and use of antimicrobials in food-producing animals, and the resultant impacts on antimicrobial resistance (AMR). Reduction strategies have been implemented successfully in some Member States. Such strategies include national reduction targets, benchmarking of antimicrobial use, controls on prescribing and restrictions on use of specific critically important antimicrobials, together with improvements to animal husbandry and disease prevention and control measures. Due to the multiplicity of factors contributing to AMR, the impact of any single measure is difficult to quantify, although there is evidence of an association between reduction in antimicrobial use and reduced AMR. To minimise antimicrobial use, a multifaceted integrated approach should be implemented, adapted to local circumstances. Recommended options (non-prioritised) include: development of national strategies; harmonised systems for monitoring antimicrobial use and AMR development; establishing national targets for antimicrobial use reduction; use of on-farm health plans; increasing the responsibility of veterinarians for antimicrobial prescribing; training, education and raising public awareness; increasing the availability of rapid and reliable diagnostics; improving husbandry and management procedures for disease prevention and control; rethinking livestock production systems to reduce inherent disease risk. A limited number of studies provide robust evidence of alternatives to antimicrobials that positively influence health parameters. Possible alternatives include probiotics and prebiotics, competitive exclusion, bacteriophages, immunomodulators, organic acids and teat sealants. Development of a legislative framework that permits the use of specific products as alternatives should be considered. Further research to evaluate the potential of alternative farming systems on reducing AMR is also recommended. Animals s
- Published
- 2017
27. Totally Implantable Venous Access Devices in Children with Medical Complexity: Preliminary Data from a Tertiary Care Hospital
- Author
-
Geremia, Caterina, primary, De Ioris, Maria Antonietta, additional, Crocoli, Alessandro, additional, Adorisio, Ottavio, additional, Scrocca, Raffaella, additional, Lombardi, Mary Haywood, additional, Staccioli, Susanna, additional, Stella, Pietro, additional, Amendola, Paola, additional, Ciliento, Gaetano, additional, De Peppo, Francesco, additional, and Campana, Andrea, additional
- Published
- 2017
- Full Text
- View/download PDF
28. BSE exposure risk from bovine intestine and mesentery
- Author
-
Barizzone, Fulvio, Budka, Herbert, Fast, Christine, Griffin, John N., Ru, Giuseppe, Stella, Pietro, and Andreoletti, Olivier
- Subjects
Bovine Spongiform Encephalopathy (BSE) ,cattle ,intestine ,mesentery ,specified risk material (SRM) ,quantitative risk assessment (QRA) - Published
- 2014
29. The Role of the European Food Safety Authority (EFSA) in the Fight against Antimicrobial Resistance (AMR).
- Author
-
Stella, Pietro, Beloeil, Pierre-Alexandre, Guerra, Beatriz, Hugas, Marta, and Liebana, Ernesto
- Subjects
DRUG resistance in microorganisms ,ANTI-infective agents ,HEALTH risk assessment ,PUBLIC health - Abstract
The European Food Safety Authority (EFSA) is an agency funded by the European Union that acts as a source of scientific advice and communication on risks associated with the food chain. EFSA is actively involved in many activities in the area of antimicrobial resistance (AMR). It provides scientific advice used to support the European legislator and Member States in making effective and timely risk management decisions in the fight against AMR for example, in reducing the need to use antimicrobials in food-producing animals or in managing emerging threats such as resistance of microorganisms to beta-lactams, carbapenems and colistin. EFSA provides advice on how to monitor AMR in food-producing animals and food, and gathers and analyzes data collected at the national level in Europe. Finally, it actively communicates the risks linked to antimicrobial resistance. This paper provides an overview of the activities of EFSA in the area of AMR. [ABSTRACT FROM AUTHOR]
- Published
- 2018
30. Una costituzione per la Chiesa. La proposta di un Concilio ecumenico negli anni della Rivoluzione francese Mario Tosti
- Author
-
Stella, Pietro
- Published
- 2007
31. Presentazione (M. Belardinelli)- L'Università di Roma fra Stato ecclesiastico e Stato Italiano (M. Belardinelli)- Introduzione al Convegno (P. Stella)- Problemi pastorali a Roma nell'età di Pio IX (M. Lupi)- Chiesa del papa e Chiesa locale: Roma, la cit
- Author
-
BELARDINELLI, Mario, STELLA, Pietro, LUPI, Maria, RICCARDI, Andrea, Mario Belardinelli (curatore)Pietro Stella (curatore), Belardinelli, Mario, Stella, Pietro, Lupi, Maria, and Riccardi, Andrea
- Subjects
cultura moderna e contemporanea ,Roma ,comunità cristiana ,Stato e Chiesa - Abstract
L'insieme dei saggi qui pubblicati costituisce il risultato di un cammino di ricerca sula storia della comunità cristiana di Roma in età moderna e contemporanea e fa seguito a daltri due percorsi sull'età antica e transizione al Medioevo e sul periodo tra il X e il XVI secolo. Questo impegno di studio si è dimostrato una valida prova di collaborazione tra le Università Romane rappresentando, nella forma del convegno accademico, la riflessione su svariati aspetti, anche contraddittori, della presenza cristiana nella città di Roma. Il passato 'cristiano' si propone come chiave di lettura per cogliere i dati attuali della storia, della cultura, delle manifestazioni religiose culminate nel recente anno giubilare legati alla vita della comunità cristiana di Roma.
- Published
- 2002
32. Sudditi ribelli. Fedeltà e infedeltà politiche nella Roma di fine Settecento, (Studi Storici Carocci, 53) Marina Formica
- Author
-
Stella, Pietro
- Published
- 2006
33. Il Concordato italiano del 1803, (Università degli Studi di Roma "Tor Vergata". Pubblicazioni della Facoltà di Giurisprudenza. Nuova serie, 14) Daniele Arru
- Author
-
Stella, Pietro
- Published
- 2006
34. Chiesa romana e rivoluzione francese 1789-1799, (Collection de l'École Française de Rome, 336) Luigi Fiorani Domenico Rocciolo
- Author
-
Stella, Pietro
- Published
- 2006
35. Religione cultura e politica nell'Europa moderna. Studi offerti a Mario Rosa dagli amici, (Accademia toscana di scienze e lettere «La Colombaria». Studi, 212) Carlo Ossola Marcello Verga Maria Antonietta Visceglia Leo S. Olschki
- Author
-
Stella, Pietro
- Published
- 2006
36. Carteggio. I: 1724-1743, (Edizioni maggiori. Serie dell'Istituto Storico Redentorista — Roma, 1) S. Alfonso Maria de Liguori Giuseppe Orlandi
- Author
-
Stella, Pietro
- Published
- 2006
37. Francesco Faà di Bruno. Ricerca scientifica, insegnamento e divulgazione, (Miscellanea di Storia italiana. Serie V. Studi e fonti per la storia della Università di Torino, 12) Livia Giacardi
- Author
-
Stella, Pietro
- Published
- 2006
38. Don Bosco. L'identità italiana
- Author
-
STELLA, Pietro and Stella, Pietro
- Subjects
italia ottocento ,rapporti stato-chiesa ,Don Bosco - Abstract
Il primo aprile 1934 Pio XI proclama solennemente santo il prete piemontese fondatore dei salesiani. È il momento in cui Don Bosco diviene "il più italiano dei santi", colui che nella Torino ottocentesca, pur nei difficili rapporti tra Stato e Chiesa aveva preparato migliaia di giovani al nuovo lavoro industriale. Don Bosco infatti vide ciò che uomini di stato e istituzioni tardarono a vedere, cioè l'insorgere di un mondo adolescenziale e giovanile che per i suoi tratti e aspirazioni rappresenterà uno dei grandi elementi di novità dell'epoca contemporanea. Mentre la drastica diminuzione della mortalità infantile faceva crescere le schiere dei giovani, l'inurbamento, l'industrializzazione, l'emigrazione portavano ad un allentamento delle strutture familiari e a una loro progressiva inadeguatezza a svolgere un ruolo educativo. Gli oratori, i collegi, le scuole, in particolare quelle professionali, fondati da Don Bosco, valsero a integrare in una società travagliata dalla modernità la gioventù meno abbiente, offrendole quelle opportunità che i sistemi scolastici per molto tempo non erano stati in grado di garantire.
- Published
- 2001
39. Problemi di critica testuale nell'Epistolario del Murialdo, (Centro Storico Giuseppini del Murialdo «Fonti e studi», 9) Giovenale Dotta
- Author
-
Stella, Pietro
- Published
- 2005
40. Assessing the impact of a revision of the BSE Monitoring regime in some European Union Member States
- Author
-
Arnold, Mark, Andreoletti, Olivier, Barizzone, Fluvio, Budka, Herbert, Ducrot, Christian, Hope, James, Stella, Pietro, Vanopdenbosch, Emmanuel, Vivas-Alegre, Luis, Koeijer, Aline, Veterinary Laboratories Agency, Interactions hôtes-agents pathogènes [Toulouse] (IHAP), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, European Food Safety Authority (EFSA), Medizinische Universität Wien = Medical University of Vienna, Unité de Recherche d'Épidémiologie Animale (UR EpiA), Institut National de la Recherche Agronomique (INRA), Centre d'Etudes Vétérinaires et Agrochimiques, Partenaires INRAE, Wageningen University and Research Centre (WUR), and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2008
41. Fra Jacopo da Monte Morello (al secolo Giacomo Leopardi) Oronzo Giordano
- Author
-
Stella, Pietro
- Published
- 2001
42. The European Union summary report on data of the surveillance of ruminants for the presence of transmissible spongiform encephalopathies (TSEs) in 2015.
- Author
-
Boelaert, Frank, Hugas, Marta, Pelaez, Angel Ortiz, Rizzi, Valentina, Stella, Pietro, and Stede, Yves Van Der
- Subjects
CHRONIC wasting disease ,PROTEIN expression ,BOVINE spongiform encephalopathy ,STATISTICAL sampling ,ANIMAL species - Abstract
This report of EFSA presents the results of surveillance activities on transmissible spongiform encephalopathies (TSEs) in bovine animals, sheep and goats as well as genotyping data in sheep, carried out in 2015 in the EU and in three non-Member States (non-MS). Since 2001, approximately 114 million cattle in the EU have been tested for bovine spongiform encephalopathy (BSE) according Regulation (EC) 999/2001. In 2015, 1.4 million bovine animals were tested and five cases were detected in four MS (Ireland: one case; Slovenia: one case; Spain: one case; and the United Kingdom: two cases) and one case was detected in Norway. Two cases (in Ireland and the United Kingdom) were affected by classical BSE and both cases were born after the EU-wide feed ban enforced in 2001. The remaining four cases were atypical BSE cases (three H-BSE type and one L-BSE type). Since 2002, approximately 8.4 million small ruminants have been tested during the EU-wide surveillance for scrapie. In 2015, 319,638 sheep and 135,857 goats were tested. In total, 641 scrapie cases in sheep were detected in 18 MS while 1,052 scrapie cases in goats were detected in nine MS, respectively. In two non-MS (Iceland and Norway), 40 scrapie cases in sheep were detected. Although in a number of MS the decrease in classical scrapie is clear, at the EU level there is no clear decreasing trend in the occurrence of scrapie in small ruminants. Results obtained from genotyping in sheep confirm that cases of classical scrapie are clustered among certain genotypes, and animals with these genotypes seem to account for less than 20% of the European randomly sampled sheep population. In total, 580 samples from species other than domestic ruminants were tested for TSE in three MS, all with negative results. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
43. Fulminant Hepatic Failure Following Measles
- Author
-
Valerio Nobili, Petrini Stefania, and Stella Pietro
- Subjects
Microbiology (medical) ,medicine.medical_specialty ,business.industry ,Infant ,Liver Failure, Acute ,medicine.disease ,Gastroenterology ,Measles ,Liver Transplantation ,Infectious Diseases ,Fulminant hepatic failure ,Liver ,Internal medicine ,Pediatrics, Perinatology and Child Health ,Humans ,Medicine ,Female ,business - Published
- 2007
44. Ranking the microbiological safety of foods: A new tool and its application to composite products
- Author
-
Stella, Pietro, primary, Cerf, Olivier, additional, Hugas, Marta, additional, Koutsoumanis, Kostas P., additional, Nguyen-The, Christophe, additional, Sofos, John N., additional, Valero, Antonio, additional, and Zwietering, Marcel H., additional
- Published
- 2013
- Full Text
- View/download PDF
45. Bibliografia del P. Giacomo Martina S.I. (1945-1996)
- Author
-
Guasco Maurilio, Monticone Alberto, Stella Pietro, Negruzzo, Simona, Negruzzo, Simona (ORCID:0000-0001-5717-830X), Guasco Maurilio, Monticone Alberto, Stella Pietro, Negruzzo, Simona, and Negruzzo, Simona (ORCID:0000-0001-5717-830X)
- Abstract
Ricognizione bibliografica dlel'opera dello storico Giacomo Martina.
- Published
- 1998
46. Liver Transplant in a Patient With Acquired Epidermolysis Bullosa and Associated End-Stage Liver Disease.
- Author
-
Vennarecci, Giovanni, Miglioresi, Lucia, Guglielmo, Nicola, Pelle, Fabio, Santoro, Roberto, Andreuccetti, Jacopo, Ceribelli, Cecilia, Stella, Pietro, Angelo, Corrado, and Ettorre, Giuseppe Maria
- Published
- 2017
- Full Text
- View/download PDF
47. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 2: Aminoglycosides/aminocyclitols: apramycin, paromomycin, neomycin and spectinomycin
- Author
-
Tecnologia de los Alimentos, Allende, Ana, Koutsoumanis, Konstantinos, Álvarez Ordóñez, Avelino, Bolton, Declan, Bover‐Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson‐Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Tecnologia de los Alimentos, Allende, Ana, Koutsoumanis, Konstantinos, Álvarez Ordóñez, Avelino, Bolton, Declan, Bover‐Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson‐Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López Gálvez, Gloria, Manini, Paola, Stella, Pietro, and Peixe, Luisa
- Abstract
[EN] The specific concentrations of apramycin, paromomycin, neomycin and spectinomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for these antimicrobials, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for apramycin and neomycin, whilst for paromomycin and spectinomycin, no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these four antimicrobials
48. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 9: Polymyxins: colistin
- Author
-
Tecnologia de los Alimentos, Koutsoumanis, Konstantinos, Allende, Ana, Álvarez Ordóñez, Avelino, Bolton, Declan, Bover‐Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson‐Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Tecnologia de los Alimentos, Koutsoumanis, Konstantinos, Allende, Ana, Álvarez Ordóñez, Avelino, Bolton, Declan, Bover‐Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson‐Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López Gálvez, Gloria, Manini, Paola, Stella, Pietro, and Peixe, Luisa
- Abstract
[EN] The specific concentrations of colistin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of colistin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials
49. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 3: Amprolium
- Author
-
Tecnologia de los Alimentos, Koutsoumanis, Konstantinos, Allende, Ana, Álvarez Ordóñez, Avelino, Bolton, Declan, Bover‐Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson‐Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López Gálvez, Gloria, Manini, Paola, Stella, Pietro, Peixe, Luisa, Tecnologia de los Alimentos, Koutsoumanis, Konstantinos, Allende, Ana, Álvarez Ordóñez, Avelino, Bolton, Declan, Bover‐Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Andersson, Dan I, Bampidis, Vasileios, Bengtsson‐Palme, Johan, Bouchard, Damien, Ferran, Aude, Kouba, Maryline, López Puente, Secundino, López Alonso, Marta, Nielsen, Søren Saxmose, Pechová, Alena, Petkova, Mariana, Girault, Sebastien, Broglia, Alessandro, Guerra, Beatriz, Innocenti, Matteo Lorenzo, Liébana, Ernesto, López Gálvez, Gloria, Manini, Paola, Stella, Pietro, and Peixe, Luisa
- Abstract
[EN] The specific concentrations of amprolium in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for amprolium, it was not possible to conclude the assessment. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of amprolium in feed that showed to have an effect on growth promotion/increased yield were reported. The lack of antibacterial activity at clinically relevant concentrations for amprolium suggests that further studies relating to bacterial resistance are not a priority.
50. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain
- Author
-
Tecnologia de los Alimentos, Koutsoumanis, Konstantinos, Allende, Ana, Álvarez Ordóñez, Avelino, Bolton, Declan, Bover‐Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Argüello Rodríguez, Héctor, Berendonk, Thomas, Cavaco, Lina Maria, Gaze, William, Schmitt, Heike, Topp, Ed, Guerra, Beatriz, Liébana, Ernesto, Stella, Pietro, Peixe, Luisa, Tecnologia de los Alimentos, Koutsoumanis, Konstantinos, Allende, Ana, Álvarez Ordóñez, Avelino, Bolton, Declan, Bover‐Cid, Sara, Chemaly, Marianne, Davies, Robert, De Cesare, Alessandra, Herman, Lieve, Hilbert, Friederike, Lindqvist, Roland, Nauta, Maarten, Ru, Giuseppe, Simmons, Marion, Skandamis, Panagiotis, Suffredini, Elisabetta, Argüello Rodríguez, Héctor, Berendonk, Thomas, Cavaco, Lina Maria, Gaze, William, Schmitt, Heike, Topp, Ed, Guerra, Beatriz, Liébana, Ernesto, Stella, Pietro, and Peixe, Luisa
- Abstract
[EN]The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs blaCTX-M, blaVIM, blaNDM, blaOXA-48-like, blaOXA-23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.