1. Stiffness Control of Deformable Robots Using Finite Element Modeling
- Author
-
Allison M. Okamura, Christian Duriez, Margaret Koehler, Department of Mechanical Engineering [Stanford], Stanford University, Deformable Robots Simulation Team (DEFROST ), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Inria@SiliconValley (Inria@SiliconValley), Stanford University-University of California [Santa Cruz] (UCSC), University of California-University of California-Institut National de Recherche en Informatique et en Automatique (Inria)-University of California [Santa Barbara] (UCSB), University of California-University of California [San Diego] (UC San Diego), University of California-Ministère de l'Europe et des Affaires étrangères (MEAE)-University of Southern California (USC)-CITRIS-University of California [Irvine] (UCI), University of California, Fulbright and Chateaubriand fellowships, SOFA, DEFROST, Stanford University-University of California [Santa Cruz] (UC Santa Cruz), University of California (UC)-University of California (UC)-Institut National de Recherche en Informatique et en Automatique (Inria)-University of California [Santa Barbara] (UC Santa Barbara), University of California (UC)-University of California [San Diego] (UC San Diego), University of California (UC)-Ministère de l'Europe et des Affaires étrangères (MEAE)-University of Southern California (USC)-CITRIS-University of California [Irvine] (UC Irvine), and University of California (UC)
- Subjects
0209 industrial biotechnology ,Control and Optimization ,Haptics and Haptic Interfaces ,Computer science ,Biomedical Engineering ,Soft robotics ,02 engineering and technology ,law.invention ,Computer Science::Robotics ,Compliance and Impedance Control ,020901 industrial engineering & automation ,Modeling ,Artificial Intelligence ,law ,Control theory ,Control ,medicine ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,Haptic technology ,ComputingMethodologies_COMPUTERGRAPHICS ,Robot kinematics ,Mechanical Engineering ,Stiffness ,021001 nanoscience & nanotechnology ,Robot end effector ,Computer Science Applications ,Robot control ,Human-Computer Interaction ,Impedance control ,Control and Systems Engineering ,Robot ,Computer Vision and Pattern Recognition ,medicine.symptom ,0210 nano-technology ,Actuator ,Learning for Soft Robots - Abstract
International audience; Due to the complexity of modeling deformable materials and infinite degrees of freedom, the rich background of rigid robot control has not been transferred to soft robots. Thus, most model-based control techniques developed for soft robots and soft haptic interfaces are specific to the particular device. In this paper, we develop a general method for stiffness control of soft robots suitable for arbitrary robot geometry and many types of actuation. Extending previous work that uses finite element modeling for position control, we determine the relationship between end-effector and actuator compliance, including the inherent device compliance, and use this to determine the appropriate controlled actuator stiffness for a desired stiffness of the end-effector. Such stiffness control, as the first component of impedance control, can be used to compensate for the natural stiffness of the deformable device and to control the robot's interaction with the environment or a user. We validate the stiffness projection on a deformable robot and include this stiffness projection in a haptic control loop to render a virtual fixture.
- Published
- 2019
- Full Text
- View/download PDF