Back to Search Start Over

Stiffness Control of Deformable Robots Using Finite Element Modeling

Authors :
Allison M. Okamura
Christian Duriez
Margaret Koehler
Department of Mechanical Engineering [Stanford]
Stanford University
Deformable Robots Simulation Team (DEFROST )
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Inria@SiliconValley (Inria@SiliconValley)
Stanford University-University of California [Santa Cruz] (UCSC)
University of California-University of California-Institut National de Recherche en Informatique et en Automatique (Inria)-University of California [Santa Barbara] (UCSB)
University of California-University of California [San Diego] (UC San Diego)
University of California-Ministère de l'Europe et des Affaires étrangères (MEAE)-University of Southern California (USC)-CITRIS-University of California [Irvine] (UCI)
University of California
Fulbright and Chateaubriand fellowships
SOFA
DEFROST
Stanford University-University of California [Santa Cruz] (UC Santa Cruz)
University of California (UC)-University of California (UC)-Institut National de Recherche en Informatique et en Automatique (Inria)-University of California [Santa Barbara] (UC Santa Barbara)
University of California (UC)-University of California [San Diego] (UC San Diego)
University of California (UC)-Ministère de l'Europe et des Affaires étrangères (MEAE)-University of Southern California (USC)-CITRIS-University of California [Irvine] (UC Irvine)
University of California (UC)
Source :
IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, IEEE 2019, 4 (2), pp.469-476. ⟨10.1109/LRA.2019.2890897⟩, IEEE Robotics and Automation Letters, 2019, 4 (2), pp.469-476. ⟨10.1109/LRA.2019.2890897⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Due to the complexity of modeling deformable materials and infinite degrees of freedom, the rich background of rigid robot control has not been transferred to soft robots. Thus, most model-based control techniques developed for soft robots and soft haptic interfaces are specific to the particular device. In this paper, we develop a general method for stiffness control of soft robots suitable for arbitrary robot geometry and many types of actuation. Extending previous work that uses finite element modeling for position control, we determine the relationship between end-effector and actuator compliance, including the inherent device compliance, and use this to determine the appropriate controlled actuator stiffness for a desired stiffness of the end-effector. Such stiffness control, as the first component of impedance control, can be used to compensate for the natural stiffness of the deformable device and to control the robot's interaction with the environment or a user. We validate the stiffness projection on a deformable robot and include this stiffness projection in a haptic control loop to render a virtual fixture.

Details

Language :
English
ISSN :
23773766
Database :
OpenAIRE
Journal :
IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, IEEE 2019, 4 (2), pp.469-476. ⟨10.1109/LRA.2019.2890897⟩, IEEE Robotics and Automation Letters, 2019, 4 (2), pp.469-476. ⟨10.1109/LRA.2019.2890897⟩
Accession number :
edsair.doi.dedup.....35cf07849446782fe8dee8d5c84822f7
Full Text :
https://doi.org/10.1109/LRA.2019.2890897⟩